• 제목/요약/키워드: Deionized Water

검색결과 473건 처리시간 0.028초

PEMFC 냉각 시스템의 물부식 방지에 관한 연구 (Study on Corrosion Problems in PEMFC Cooling System)

  • 박광진;정재화;김정현;배중면
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1188-1193
    • /
    • 2007
  • This study focuses on the corrosion problems of STS316(stainless steel 316) tube for the cooling system of PEMFC (Proton Exchange Membrane Fuel Cell) operation. Deionized water which is highly corrosive is used especially for cooling agent of PEMFC to eliminate electrical conductivity, The tensile stress analysis was performed to check the change of mechanical strength of cooling line and pH of the water was monitored for the observation of extent of corrosion at simulated PEMFC operating condition. When STS316 tube was exposed to deionized water for 500 hours, substantial cracks were found on the surface and the pH of water was decreased from 6.8 to 5.8. For prevention of corrosion problems, the STS316 was coated by three kinds of fluororesin such as PTFE, FEP and ETFE. Among the coating materials, PTFE was the most protective in corrosive environment and was maintained the mechanical strength. To lower the cost, the same experimental analyses were carried out for iron tubes and the result will be discussed in detail.

Multi-Walled Carbon Nanotube (MWCNT) Dispersion and Aerosolization with Hot Water Atomization without Addition of Any Surfactant

  • Ahn, Kang-Ho;Kim, Sun-Man;Yu, Il-Je
    • Safety and Health at Work
    • /
    • 제2권1호
    • /
    • pp.65-69
    • /
    • 2011
  • Objectives: Carbon nanotubes are an important new class of technological materials that have numerous novel and useful properties. Multi-walled carbon nanotubes (MWCNTs), which is a nanomaterial, is now in mass production because of its excellent mechanical and electrical properties. Although MWCNTs appear to have great industrial and medical potential, there is little information regarding their toxicological effects on researchers and workers who could be exposed to them by inhalation during the handling of MWCNTs. Methods: The generation of an untangled MWCNT aerosol with a consistent concentration without using surfactants that was designed to be tested in in vivo inhalation toxicity testing was attempted. To do this, MWCNTs were dispersed in deionized water without the addition of any surfactant. To facilitate the dispersion of MWCNTs in deionized water, the water was heated to $40^{\circ}C$, $60^{\circ}C$, and $80^{\circ}C$ depending on the sample with ultrasonic sonication. Then the dispersed MWCNTs were atomized to generate the MWCNT aerosol. After aerosolization of the MWCNTs, the shapes of the NTs were examined by transmission electron microscopy. Results: The aerosolized MWCNTs exhibited an untangled shape and the MWCNT generation rate was about 50 $mg/m^3$. Conclusion: Our method provided sufficient concentration and dispersion of MWNCTs to be used for inhalation toxicity testing.

고속액체크로마토그래피를 이용한 가시오갈피의 리그난 함량 (Lignan contents in Acanthopanax senticosus by HPLC)

  • 김혜민;조선행;국순자;이상현
    • 농업과학연구
    • /
    • 제38권3호
    • /
    • pp.479-484
    • /
    • 2011
  • A reverse-phase system of HPLC using a linear gradient of acetonitrile and deionized water was developed for the quantification lignans, eleutherosides B and E, in Acanthopanax senticosus. The HPLC system consisted of linear gradient of acetonitrile and deionized water, and UV/VIS detection was set at 210 nm. Both eleutherosides B and E contents in different parts of A. senticosus were determined. As a result, the contents of eleutherosides B and E were measured in the leaves (trace amounts and 0.029 mg/g, respectively), stems (0.107 and 1.015 mg/g, respectively), roots (0.026 and 0.390 mg/g, respectively), and fruits (0.022 and 0.043 mg/g, respectively). Moreover, eleutherosides B and E in the water extract were found 0.011 and 0.171 mg/g, respectively.

Lubricating Effect of Water-soluble Hexagonal Boron Nitride Nanolubricants on AISI 304 Steel Sliding Pair

  • Gowtham Balasubramaniam;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.43-48
    • /
    • 2023
  • In this study, we investigate the tribological behavior of AISI 304 stainless steel pairs under deionized water and hexagonal boron nitride (h-BN) water dispersion lubrication. The specimen friction and wear properties are evaluated using a reciprocating ball-on-flat tribometer. The coefficient of friction remains nearly constant throughout the test under both lubricant conditions. The wear depth of the specimens under h-BN lubrication is smaller than that under deionized water lubrication, indicating the inhibition behavior of h-BN nanolubricants on direct metal-metal contacts. Optical micrographs and stylus profilometer measurements are performed to evaluate the severity of damage caused by the sliding motion and to determine the wear morphology of the specimens, respectively. The results show that h-BN nanolubricants does not have a significant effect on the friction behavior but demonstrates reduced wear owing to their trapping effect between the sliding interfaces. Moreover, scanning electron microscopy and energy-dispersive X-ray spectroscopy images of the specimens were acquired to confirm the trapping effect of h-BN between the sliding interfaces. The results also suggest that the trapped lubricants can distribute the contact pressure, reducing the wear damage caused by the metal-metal contact at the interface. In conclusion, h-BN nanolubricants have potential as an anti-wear additive for lubrication applications. Further investigation is needed to provide direct evidence of the trapping effect of h-BN nanoparticles between the sliding interfaces. These findings could lead to the development of more efficient and effective lubricants for various industrial applications.

새로운 캘릭스[4]아렌 유도체를 이용한 $Pb^{2+}$ 이온 친화성 막전극 (The $Pb^{2+}$ Ion Affinitive Membrane Electrode Based on New Calix[4]arene Ionophore)

  • 김은진;김민규;남궁미옥;백경수;윤영자
    • 대한화학회지
    • /
    • 제42권5호
    • /
    • pp.531-538
    • /
    • 1998
  • 캘릭스[4]아렌 유도체(호스트 1)를 이온선택성 물질로 사용하고, 지지체로 poly(vinyl chloride)(PVC), 가소제로 dioctylsebacate(DOS)를 사용하여 이온 선택성 막전극을 제작하였다. 호스트 1 막전극을 지시전극으로 사용하여 알칼리, 알칼리 토금속 양이온 그리고 전이 금속 양이온에 대하여 각각의 감응전위를 측정한 결과, 바탕 전해질이 탈 이온수 일때 $Pb^{2+}$의 감응전위가 $1.0 \times10^-6M~1.0 \times 10^-1 M$ 농도 범위에서 이론적인 Nernstian 감응전위 기울기에 가까운 26.5mV/decade를 보여 주었다. 또한 pH 영향을 조사해 본 결과 pH 4.00∼12.00 범위에서 감응전위값이 일정하게 유지되었다. 따라서 본 연구에서 제작된 호스트 1 막전극은 탈이온수 상에서 $Pb^{2+}$에 친화성을 갖는 이온 막전극으로 나타났다.

  • PDF

디젤로 오염된 지하수의 오존산화처리에 대한 연구 (A study on the Ozone oxidation of Diesel-contaminated Groundwater)

  • 권충일;공성호;김무훈
    • 한국토양환경학회지
    • /
    • 제5권3호
    • /
    • pp.3-15
    • /
    • 2001
  • 본 연구에서는 증류수와 인공지하수, 그리고 지하수를 대상으로 오존의 분해거동(오존의 자가분해, pH의 영향, 용해도)과 오존산화공정에 의한 디젤의 분해(디젤의 분해, TCE와 PCE의 분해, 수산화라디칼 scavenger의 영향, pH의 영향, 오존/과산화수소의 영향)를 조사하였다. 증류수와 지하수내에서 오존의 자가분해는 모두 2차 반응속도식을 보였고, 증류수(반감기 37.5 분)에서보다 지하수(반감기 14.7분)에서 훨씬 빠르게 오존이 분해되었으며, 알칼리성 조건하에서 두 액상에서 모두 오존의 분해는 촉진되었다. 또한 오존산화공정의 사용은 TCE와 PCE, 그리고 디젤에 대해 높은 산화처리속도를 나타내었다. 비록 지하수내에 존재하는 hydroxyl radical scavenger는 디젤의 분해에서 억제제로 작용하였지만, 높은 pH조건과 과산화수소의 첨가는 지하수내에서 디젤을 분해시키는 데 중요한 촉진제로서 작용하였다. 그러므로 오존산화공정은 디젤로 오염된 지하수를 처리하는 데 효과적으로 적용될 것이라 판단된다.

  • PDF

Improved Conductivities of SWCNT Transparent Conducting Films on PET by Spontaneous Reduction

  • 민형섭;김상식;이전국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWCNT) are transparent in the visible and show conductivity comparable to copper, and are environmentally stable. SWCNT films have high flexibility, conductivity and transparency approaching that indium tin oxide (ITO), and can be prepared inexpensively without vacuum equipment. Transparent conducting Films (TCF) of SWCNTs has the potential to replace conventional transparent conducting oxides (TCO, e.g. ITO) in a wide variety of optoelectronic devices, energy conversion and photovoltaic industry. However, the sheet resistance of SWCNT films is still higher than ITO films. A decreased in the resistivity of SWCNT-TCFs would be beneficial for such an application. We fabricated SWCNT sheet with $KAuBr_4$ on PET substrate. Arc-discharge SWCNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWCNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with AuBr4-, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. $HNO_3$ treated SWCNT films with Au nano-particles have the lowest 61 ${\Omega}$/< sheet resistance in the 80% transmittance. Sheet resistance was decreased due to the increase of the hole concentration at the washed SWCNT surface by p-type doping of $AuBr_4{^-}$.

  • PDF

High Conductivity of Transparent SWNT Films on PET by Ionic Doping

  • Min, Hyung-Seob;Kim, Sang-sig;Choi, Won-Kook;Lee, Jeon-Kook
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.65-65
    • /
    • 2011
  • Single-well carbon nanotubes (SWNT) have been proposed as a promising candidate for various applications owing to their excellent properties. In particular, their fascinating electrical and mechanical properties could provide a new area for the development of advanced engineering materials. A transparent conductive thin film (TCF) has increased for applications such as liquid crystal displays, touch panels, and flexible displays. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. But, a bundle of CNTs has different electrical properties than their individual counterparts. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. Results, we show that 97 ${\Omega}$/> sheet resistance can be achieved with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after ionic doping treatments were discussed.

  • PDF

Transparent Conductive Films Composite with Copper Nanoparticle/Graphene Oxide Fabricated by dip Process and Electrospinning

  • 김진운;김경민;김용호;김수용;조수지;이응상;석중현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.382.2-382.2
    • /
    • 2014
  • We explain a method to fabricate multi-layered transparent conductive films (TCF) using graphene oxide (GO), copper powder and polyurethane (PU) solution. The flexible graphene nanosheets (GNSs) serve as nanoscale connection between conductive copper nanoparticles (CuNps) and PU nanofibers, resulting in a highly flexible TCF. To fabricate conductive films with high transmittance, polyurethane (PU) nanofibers were used for a conductive network consisting of CuNps and GNSs (CuNps-GNSs). In this experiment, copper powder and graphene oxides were mixed in deionized water with the ultrasonication for 2 h. NaBH4 solution is used as a reduction agents of CuNps and GNSs (CuNps-GNSs) under a nitrogen atmosphere in the oil bath at 100% for 24 h to mixed. The purified and dispersed CuNp-GNS were obtained in deionized water, and diluted to a 10wt.% based on the contents of GNSs. Polyurethane (PU) nanofibers on a PET substrate were formed by electrospinning method. PET slides coated with the PU nanofibers were immersed into CuNp-GNS solution for several second, rinsed briefly in deionized water, and dried to obtain self-assembled CuNp-GNS/PU films. The morphology of the multi-layered films were characterized with a field emission scanning electron microscope (FE-SEM, Hitachi S-4700) and atomic force microscope (AFM, PSIA XE-100). The electrical property was analysed by the I-V measurement system and the optical property was measured by the UV/VIS spectroscopy.

  • PDF

연부현상이 발생한 감귤로부터 분리한 효모에 대한 유기산의 생육 저해 효과 (Inhibitory Effects of Organic Acids against Pectinolytic Yeasts Isolated from Decayed Citrus)

  • 박은진;김소연
    • 한국식품조리과학회지
    • /
    • 제31권1호
    • /
    • pp.1-8
    • /
    • 2015
  • Organic acids are known as natural sanitizers. We examined the sanitizing effects of five organic acids (acetic acid, propionic acid, citric acid, malic acid, and lactic acid) and their persistence on three pectinolytic yeast strains isolated from decayed citrus, and the persistence of their sanitizing effects was determined during storage at $4^{\circ}C$ and $16^{\circ}C$. The 7~8 log CFU/mL of the mixed three yeast mixture was exposed to various concentrations of each organic acid for 1 min. The yeast mixtures decreased under detection limit(1 log CFU/mL) in 1% of acetic acid, followed by in 3% of propionic acid with the reduction of 5 log CFU/mL. The citric acid, malic acid, and lactic acid decreased the number of yeasts under detection limit at 7.5%. When treated with deionized water and 1~5% of organic acids were treated on the surfaces of citrus contaminated by yeasts, total numbers of the yeasts decreased under detection limit(3 log CFU) at 5% of acetic acid and 4 log CFU/piece at 5% propionic acid compared with deionized water. When treated with acetic acid and propionic acid on the stem ends of the contaminated citrus, total numbers of the yeasts significantly decreased 0.5 log CFU/piece at 3% of both organic acids. During storage at $4^{\circ}C$ and $16^{\circ}C$ for 20 days, total number of yeasts significantly decreased at 2% acetic acid compared with deionized water. This study suggested that organic acids could be used to sanitize microbial contaminants from citrus for storage and transportation.