• Title/Summary/Keyword: Deinococcus geothermalis

Search Result 13, Processing Time 0.029 seconds

Characterization of the Starch Degradation Activity of recombinant glucoamylase from Extremophile Deinococcus geothermalis (극한성 미생물Deinococcus geothermalis 유래 재조합 글루코아밀레이즈의 전분 분해 활성 특징)

  • Jang, Seung-Won;Kwon, Deok-Ho;Park, Jae-Bum;Jung, Jong-Hyun;Ha, Suk-Jin
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.15-19
    • /
    • 2019
  • This work focused on characterization of the starch degradation activity from extremophile strain Deinococcus geothermalis. Glucoamylase gene from D. geothermalis was cloned and overexpressed by pET-21a vector using E. coli BL21 (DE3). In order to characterize starch degrading activity of recombinant glucoamylase, enzyme was purified using HisPur Ni-NTA column. The recombinant glucoamylase from D. geothermalis exhibited the optimum temperature as $45^{\circ}C$ for starch degradation activity. And highly acido-stable starch degrading activity was shown at pH 2. For further optimization of starch degrading activity with metal ion, various metal ions ($AgCl_2$, $HgCl_2$, $MnSO_4{\cdot}4H_2O$, $CoCl_2{\cdot}6H_2O$, $MgSO_4$, $ZnSO_4{\cdot}7H_2O$, $K_2SO_4$, $FeCl_2{\cdot}4H_2O$, NaCl, or $CuSO_4$) were added for enzyme reaction. As results, it was found that $FeCl_2{\cdot}4H_2O$ or $MnSO_4{\cdot}4H_2O$ addition resulted in 17% and 9% improved starch degrading activity, respectively. The recombinant glucoamylase from D. geothermalis might be used for simultaneous saccharification and fermentation (SSF) process at high acidic conditions.

Characteristics of Xylan Degradation and HPLC Analysis of Hydrolyzed Xylans by Deinococcus geothermalis (Deinococcus geothermalis의 Xylan 최적 분해조건 및 분해산물 분석)

  • Im, Seong-Hun;Joe, Min-Ho;Jung, Sun-Wook;Lim, Sang-Yong;Song, Hyun-Pa;Kim, Dong-Ho
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.308-312
    • /
    • 2010
  • Deinococcus geothermalis is a moderate thermophillic radiation resistant bacterium producing greater abundance of sugar metabolism enzymes than other Deinococcus species. In this study, optimal condition for xylanolytic activity of D. geothermalis was determined and xylooligosaccharides from oat spelt, beechwood, and birchwood xylan hydrolysates by this organism were analyzed through HPLC. Reducing sugar yield was increased in the order of beechwood, birchwood, and oat spelt xylan. D. geothermalis displayed maximal xylanolytic activity at $40^{\circ}C$ and pH 8.0. Magnesium ion increased xylanolytic activity upto 7.5 fold. Six kinds of xylooligosaccharides (xylose, xylobios, xylotriose, xylotetraose, xylopentaose, and xylohexalose) were detected from beechwood and birchwood xylan reaction products. Among them, xylose was the major product. However, only three kinds of xylooligosaccharides (xylose, xylopentaose, and xylohexalose) were clearly detected from oat spelt xylan. Gamma-ray (50 kGy) treatment of beechwood xylan, birchwood xylan and oat spelt xylan increased xylanolytic activity of D. geothermalis. The results indicate that D. geothermalis and pretreatment of radiation is useful for xylooligosaccharides production.

Molecular Cloning and Characterization of Maltogenic Amylase from Deinococcus geothermalis (Deinococcus geothermalis 유래 maltogenic amylase의 유전자 발현 및 특성확인)

  • Jung, Jin-Woo;Jung, Jong-Hyun;Seo, Dong-Ho;Kim, Byung-Yong;Park, Cheon-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.369-374
    • /
    • 2011
  • A putative maltogenic amylase gene (DGMA) was cloned from the Deinococcus geothermalis DSM 11300 genome using the polymerase chain reaction. The gene encoded 608 amino acids with a predicted molecular mass of 68,704 Da. The recombinant DGMA was constitutively expressed using the pHCXHD plasmid. As expected, the recombinant DGMA hydrolyzed cyclodextrins and starch to maltose and pullulan to panose by cleaving the ${\alpha}$-(1,4)-glycosidic linkages, as observed for typical maltogenic amylases. Characterization of the recombinant DGMA revealed that the highest maltogenic amylase activity occurred at $40^{\circ}C$ and pH 6.0. The half-life of catalytic activity at $65^{\circ}C$ and $55^{\circ}C$ were 8.2 min and 187.4 min, respectively. DGMA mainly hydrolyzed ${\beta}$-cyclodextrin, soluble starch, and pullulan and its efficient ratio of those substrates was 9:4.5:1.

Distribution of ddr (DNA damage response) Genes among Species of Deinococcus

  • Lim, Sangyong;Jung, Sunwook;Joe, Minho;Kim, Dongho
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.289-295
    • /
    • 2010
  • The bacterium Deinococcus radiodurans is one of the most resistant organisms to the effects of ionizing radiation and other DNA-damaging agents. In this study, distributions of 10 ddr (DNA damage response) genes were investigated in 8 species of Deinococcus by polymerase chain reaction (PCR). We have compared the sequences of ddr genes of D. radiodurans, D. geothermalis and D. deserti, and selected primers which are suitable for the detection of ddr in different species of Deinococcus. A sequence homology search and PCR assay showed that ddrO, which encodes a global regulator of the radiation-desiccation response, was most well conserved in the Deinococcus lineage.

Sustainable Production of Dihydroxybenzene Glucosides Using Immobilized Amylosucrase from Deinococcus geothermalis

  • Lee, Hun Sang;Kim, Tae-Su;Parajuli, Prakash;Pandey, Ramesh Prasad;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1447-1456
    • /
    • 2018
  • The amylosucrase encoding gene from Deinococcus geothermalis DSM 11300 (DgAS) was codon-optimized and expressed in Escherichia coli. The enzyme was employed for biosynthesis of three different dihydroxybenzene glucosides using sucrose as the source of glucose moiety. The reaction parameters, including temperature, pH, and donor (sucrose) and acceptor substrate concentrations, were optimized to increase the production yield. This study demonstrates the highest ever reported molar yield of hydroquinone glucosides 325.6 mM (88.6 g/l), resorcinol glucosides 130.2 mM (35.4 g/l) and catechol glucosides 284.4 mM (77.4 g/l) when 400 mM hydroquinone, 200 mM resorcinol and 300 mM catechol, respectively, were used as an acceptor substrate. Furthermore, the use of commercially available amyloglucosidase at the end of the transglycosylation reaction minimized the gluco-oligosaccharides, thereby enhancing the target productivity of mono-glucosides. Moreover, the immobilized DgAS on Amicogen LKZ118 beads led to a 278.4 mM (75.8 g/l), 108.8 mM (29.6 g/l) and 211.2 mM (57.5 g/l) final concentration of mono-glycosylated product of hydroquinone, catechol and resorcinol at 35 cycles, respectively, when the same substrate concentration was used as mentioned above. The percent yield of the total glycosides of hydroquinone and catechol varied from 85% to 90% during 35 cycles of reactions in an immobilized system, however, in case of resorcinol the yield was in between 65% to 70%. The immobilized DgAS enhanced the efficiency of the glycosylation reaction and is therefore considered effective for industrial application.

Molecular Docking and Kinetic Studies of the A226N Mutant of Deinococcus geothermalis Amylosucrase with Enhanced Transglucosylation Activity

  • Hong, Seungpyo;Siziya, Inonge Noni;Seo, Myung-Ji;Park, Cheon-Seok;Seo, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1436-1442
    • /
    • 2020
  • Amylosucrase (ASase, E.C. 2.4.1.4) is capable of efficient glucose transfer from sucrose, acting as the sole donor molecule, to various functional acceptor compounds, such as polyphenols and flavonoids. An ASase variant from Deinococcus geothermalis, in which the 226th alanine is replaced with asparagine (DgAS-A226N), shows increased polymerization activity due to changes in the flexibility of the loop near the active site. In this study, we further investigated how the mutation modulates the enzymatic activity of DgAS using molecular dynamics and docking simulations to evaluate interactions between the enzyme and phenolic compounds. The computational analysis revealed that the A226N mutation could induce and stabilize structural changes near the substrate-binding site to increase glucose transfer efficiency to phenolic compounds. Kinetic parameters of DgAS-A226N and WT DgAS were determined with sucrose and 4-methylumbelliferone (MU) as donor and acceptor molecules, respectively. The kcat/Km value of DgAS-A226N with MU (6.352 mM-1min-1) was significantly higher than that of DgAS (5.296 mM-1min-1). The enzymatic activity was tested with a small phenolic compound, hydroquinone, and there was a 1.4-fold increase in α-arbutin production. From the results of the study, it was concluded that DgAS-A226N has improved acceptor specificity toward small phenolic compounds by way of stabilizing the active conformation of these compounds.

Enzymatic Synthesis of Resveratrol α-Glucoside by Amylosucrase of Deinococcus geothermalis

  • Moon, Keumok;Lee, Seola;Park, Hyunsu;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1692-1700
    • /
    • 2021
  • Glycosylation of resveratrol was carried out by using the amylosucrase of Deinococcus geothermalis, and the glycosylated products were tested for their solubility, chemical stability, and biological activities. We synthesized and identified these two major glycosylated products as resveratrol-4'-O-α-glucoside and resveratrol-3-O-α-glucoside by nuclear magnetic resonance analysis with a ratio of 5:1. The water solubilities of the two resveratrol-α-glucoside isomers (α-piceid isomers) were approximately 3.6 and 13.5 times higher than that of β-piceid and resveratrol, respectively, and they were also highly stable in buffered solutions. The antioxidant activity of the α-piceid isomers, examined by radical scavenging capability, showed it to be initially lower than that of resveratrol, but as time passed, the α-piceid isomers' activity reached a level similar to that of resveratrol. The α-piceid isomers also showed better inhibitory activity against tyrosinase and melanin synthesis in B16F10 melanoma cells than β-piceid. The cellular uptake of the α-piceid isomers, which was assessed by ultra-performance liquid chromatography (UPLC) analysis of the cell-free extracts of B16F10 melanoma cells, demonstrated that the glycosylated form of resveratrol was gradually converted to resveratrol inside the cells. These results indicate that the enzymatic glycosylation of resveratrol could be a useful method for enhancing the bioavailability of resveratrol.

Synthesis of α-cichoriin Using Deinococcus geothermalis Amylosucrase and Its Antiproliferative Effect

  • Moon, Keumok;Park, Hyun Su;Lee, Areum;Min, Jugyeong;Park, Yunjung;Cha, Jaeho
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.218-227
    • /
    • 2022
  • Glycosylation of aesculetin was performed using amylosucrase from the hyperthermophilic bacterium Deinococcus geothermalis DSM 11300 to improve the solubility and biological activity of aesculetin. A newly synthesized aesculetin glycoside was identified as α-cichoriin (aesculetin 7-α-D-glucoside) by nuclear magnetic resonance analysis. The solubility of α-cichoriin was 11 times higher than that of aesculetin because of the attached glucose moiety. Aesculetin and α-cichoriin had no significant effect on the proliferation of normal cells, such as RAW 264.7, but they showed a cell proliferation inhibitory effect on B16F10 melanoma cells. Unlike treatment with aesculetin and α-cichoriin, aesculin (aesculetin 6-β-D-glucoside) showed no antiproliferative activity in B16F10 cells. Based on the molecular structures of aesculin and α-cichoriin, the position where glucose binds to aesculetin and the anomeric configuration between glucose and aesculetin are thought to be important for exerting an antiproliferative effect on the B16F10 cell line. Based on these results, we propose that α-cichoriin, the α-glycosylated form of aesculetin, may serve as a model for developing phytochemical analogs with therapeutic potential for the treatment of diseases associated with tumor cell proliferation without cytotoxicity to normal cells.

Comparison of the Genomes of Deinococcal Species Using Oligonucleotide Microarrays

  • Jung, Sun-Wook;Joe, Min-Ho;Im, Seong-Hun;Kim, Dong-Ho;Lim, Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1637-1646
    • /
    • 2010
  • The bacterium Deinococcus radiodurans is one of the most resistant organisms to ionizing radiation and other DNA-damaging agents. Although, at present, 30 Deinococcus species have been identified, the whole-genome sequences of most species remain unknown, with the exception of D. radiodurans (DRD), D. geothermalis, and D. deserti. In this study, comparative genomic hybridization (CGH) microarray analysis of three Deinococcus species, D. radiopugnans (DRP), D. proteolyticus (DPL), and D. radiophilus (DRPH), was performed using oligonucleotide arrays based on DRD. Approximately 28%, 14%, and 15% of 3,128 open reading frames (ORFs) of DRD were absent in the genomes of DRP, DPL, and DRPH, respectively. In addition, 162 DRD ORFs were absent in all three species. The absence of 17 randomly selected ORFs was confirmed by a Southern blot. Functional classification showed that the absent genes spanned a variety of functional categories: some genes involved in amino acid biosynthesis, cell envelope, cellular processes, central intermediary metabolism, and DNA metabolism were not present in any of the three deinococcal species tested. Finally, comparative genomic data showed that 120 genes were Deinococcus-specific, not the 230 reported previously. Specifically, ddrD, ddrO, and ddrH genes, previously identified as Deinococcus-specific, were not present in DRP, DPL, or DRPH, suggesting that only a portion of ddr genes are shared by all members of the genus Deinococcus.

Enzymatic Synthesis of Polyphenol Glycosides by Amylosucrase (재조합 아밀로수크라아제를 이용한 효율적인 폴리페놀 배당체의 합성)

  • Park, Hyun-Su;Choi, Kyoung-Hwa;Park, Young-Don;Park, Cheon-Seok;Cha, Jae-Ho
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1631-1635
    • /
    • 2011
  • The capability of synthesizing polyphenol glycosides was examined using recombinant amylosucrase from the hyperthermophilic bacterium Deinococcus geothermalis. Based on the action mode of amylosucrase, sucrose and twenty-one polyphenols were used as a donor and acceptors respectively. The transglycosylation reaction by amylosucrase produced one or two major polyphenol glycosides depending on the type of polyphenols used. The synthesized polyphenol glycosides were detected by thin-layer chromatography. The structures of the newly synthesized polyphenol glycosides were predicted based on the transglycosylation mechanism of the enzyme. According to the acceptability of the polyphenols, the structural characteristics of polyphenol as an efficient acceptor were evaluated. The results indicate that amylosucrase is an efficient catalyst for the enzymatic synthesis of polyphenol glycosides, which have high potentials in food, cosmetics, and pharmaceutical industries.