• Title/Summary/Keyword: Degree of slope

Search Result 470, Processing Time 0.026 seconds

Effects of Footwear Type on Ankle Muscle Activity during Sloped Walking (경사로 보행에서 신발의 형태가 발목 근육의 근활성도에 미치는 영향)

  • Jeong, Jae-Hyeon;Han, Yun-Ji;Choi, Jun-Ha;Jeong, Bo-Kyung;Ryu, Ji-Young;Yu, Jae-Hee;Lee, Sang-Yeol
    • PNF and Movement
    • /
    • v.20 no.3
    • /
    • pp.443-449
    • /
    • 2022
  • Purpose: This study aims to identify the differences in the muscle activity of the ankle joint muscle depending on the type of footwear (sneakers, mule sneakers, slippers) worn while walking on a slope. Methods: The subjects wore each shoe (sneakers, mule sneakers, and slippers) and walked on an 18-degree slope at a speed of 110 beats/min. While walking, the muscle activities of the tibialis anterior and medial gastrocnemius were measured. Of the three walking cycles, the second walking cycle was measured except for the first and third walking cycles, which are the beginning and end, and a three-minute break was taken to prevent muscle fatigue when the type of footwear was changed. Results: When walking on a slope, there was no significant difference in the muscle activity of the tibialis anterior according to the type of footwear. However, when walking on a slope, the difference in muscle medial gastrocnemius muscle activity was significant between sneakers and mule sneakers. There was also a significant difference between sneakers and slippers, but there was no significant difference between slippers and mule sneakers. Conclusion: There was no significant statistical difference between sneakers and mule sneakers, but there was a numerical difference. Therefore, the presence or absence of the shoe collar may affect the muscle activity of the medial gastrocnemius when walking on a slope. This can lead to patellofemoral pain syndrome caused by the excessive use of the quadriceps, so it must be considered that caution is needed.

Fundamental Study for the Development of a New Pile under Lateral Load (횡하중에 강한 새로운 말뚝의 개발을 위한 기초 연구)

  • Yun, Yeo-Won;Jo, Ju-Hwan;Kim, Du-Gyun
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.45-60
    • /
    • 1997
  • In this research the behavior of a new type of a single pile under lateral loading and against slope sliding is studied. Especially, the section of a new pile is determined throughout experiments, and the single pile behavior under lateral loading and the effect of improvement in slope stability by using new type of pile (gear-shaped) were studied. As a result, it is known that maximum deflection of gear-shaped pile is far smaller than that of traditional PC circular pile for the same lateral loading. And lateral load of gear-shaped pile at allowable deflection was bigger than that of PC circular pile. From the comparison between two hypes of piles, it can be seen that the degree of improvement of safety factor in slope was higher in gear-shaped pile than that of PC pile under the same condition, and it results in the reduction of the number of stabilizing piles in a slope.

  • PDF

The Development of Rail-Transport Operation Control based on Unsaturated Soil Mechanics Concept (불포화토이론을 이용한 강우시 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Shin, Min-Ho;Kim, Soo-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.25-31
    • /
    • 2004
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall Infiltration show that rainfall Infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

Studies on the culture of mulberry tree on slope land (경사지상전의 생산력향상에 관한 연구)

  • 김문협
    • Journal of Sericultural and Entomological Science
    • /
    • v.10
    • /
    • pp.45-52
    • /
    • 1969
  • This experiment was carried out to investigate the factors causing obstructions to the productivity of mulberry field on slope land, increasing the productivity of that, in Korea. These results are summerized as follows: 1. Poor fertilization and unreasonable management due to overbalance of mulberry field in scale were proved to be most important factors of them obstructing the growth of mulberry. Therefore, it is necessary to increase the amount of fertilizer and cultivate mulberry fold in reasonable scale for the development of productivity. 2. As the direction of mulberry fold on slope land are closely related to the productivity, mulberry cultivation of the eastern or southern exposure were suitable, but that of northern not. It seemed to show no difference between the cultivation in 20 degree slope land and in less than that, 300 m above sea level and below that level. 3. A depth of top soil should be more than 60 cm. 4. Rosang in varieties of mulberry tree is not suitable but Chuwoo is comparatively suitable in slope land. 5. The number of mulberry trees in planting must be more than 900 trees per 10 ares.

  • PDF

Application of Topographic Index Calculation Algorithm considering Topographic Properties (지형적 특성을 고려한 지형지수 산정 알고리즘에 관한 연구)

  • Lee, Ji-Yeong;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.3
    • /
    • pp.279-288
    • /
    • 2000
  • The impact of land slope to the degree of flow divergence was considered employing distributional applications of slope exponents in the now directlOn algoriUnns. Lmear, exponential and ]X)wer law of distributional functIons were employed to address the variation of slope exponents m a terrain analysis. Dongok subwatershed at Wichun test watershed was selected as a study area. Digital Elevation Models of 20m, 30m, 40m and 50m grid size were made to perfonn the analysis. Various calcualtion methodologies of topographic index and the impact of grid sizes were investigated in terms of statistical and spatial aspects. DIstributional applications of slope e.xponents made it possible to represent the flow divergence and convergence about the ten-ain characteristics. The Monte~Carlo method was used to simulate six runoff events to check the impact of topographic factor in the runoff simulation.

  • PDF

A trend analysis of seasonal average temperatures over 40 years in South Korea using Mann-Kendall test and sen's slope (Mann-Kendall 비모수 검정과 Sen's slope를 이용한 최근 40년 남한지역 계절별 평균기온의 경향성 분석)

  • Jin, Dae-Hyun;Jang, Sung-Hwan;Kim, Hee-Kyung;Lee, Yung-Seop
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.439-447
    • /
    • 2021
  • Due to the frequent emergence of global abnormal climates, related studies on meteorological change is being actively proceed. However, the research on trend analysis using weather data accumulated over a long period of time was insufficient. In this study, the trend of temperature time series data accumulated from automated surface observing system (ASOS) for 40 years was analyzed by using a non-parametric analysis method. As a result of the Mann-Kendall test on the annual average temperature and seasonal average temperature time series data in South Korea, it has shown that an upward trend exists. In addition, the result of calculating the Sen's slope, which can determine the degree of tendency before and after the searched change point by applying the Pettitt test, recent data after the fluctuation point confirmed that the tendency of temperature rise was even greater.

Compensation of Peak Expiratory Air Flow Rate Considering Initial Slope in Velocity Type Air Flow Transducer (속도계측형 호흡기류센서에서 상승시간을 고려한 최고호기유량의 교정 기법)

  • Cha, Eun-Jong;Lee, In-Kwang;Kim, Seong-Sik;Kim, Wan-Suk;Park, Kyung-Soon;Kim, Wun-Jae;Kim, Kyung-Ah
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.867-872
    • /
    • 2009
  • Peak expiratory flow rate(PEF) is one of the most important diagnostic parameters in spirometry. PEF occurs in a very short duration during the forced expiratory maneuver, which could lead to measurement error due to non-ideal dynamic characteristic of the transducer. In such case the initial slope of the flow rate signal determines the accuracy of the measured PEF. The present study considered this initial slope as a parameter to compensate PEF. The 26 standard flow rate signals recommended by the American Thoracic Society(ATS) were flown through the air flow transducer followed by simultaneous measurements of PEF and maximum transducer output$(N_{PEF})$. $N_{PEF}$-PEF satisfied a quadratic equation in general, however, two signals (ATS #2 and #26) having large initial slopes deviated from the fitting equation to a significant degree. The relative error was found to be in a linear relationship with the initial slope, thus, $N_{PEF}$ was appropriately compensated to provide accurate PEF with mean relative error less than only 1%. The 99% confidence interval of the mean relative error was less than a half of the error limit of 5% recommended by ATS. Therefore, PEF can be very accurately determined by compensating the transducer output based on the initial slope, which should be a useful technique for air flow transducer calibration.

A Parametric Study for Jointed Rock Slope Using FEM (절리 암반사면에서의 인자효과에 의한 유한요소 해석의 타당성 검토)

  • Lee, Jin-A;Chung, Chang-Hee;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.97-102
    • /
    • 2007
  • Though the stability analysis of soil slopes widely employs the limit equilibrium method, the study on the jointed rock slopes must consider the direction of joint and the characteristics of Joint at the same time. This study analyzes the result of the change in the factors which show the characteristics of discontinuity and the shape factor of rock slopes, and so on, in an attempt to validate the propriety as to the interpretation of jointed rock slope stability which uses the general finite element program. First, the difference depending on the flow rules was compared, and the factor effect study was conducted. The selected independent variables included the direction of joint which displays the mechanical characteristics of discontinuity, adhesive cohesion, friction angle, the inclination and height of rock slope which reveal the shape of slope and surcharge load. And the horizontal displacement was numerically interpreted at the 1/3 point below the slope, a dependent variable, to compare the relative degree of factor effects. The findings of study on factor effects led to the validation that the result of horizontal displacement for each factor satisfied various engineering characteristics, making it possible to be applied to stability interpretation of jointed rock slope. A modelling is possible, which considers the application of the result of real geotechnical surveys & laboratory studies and the non-linear characteristics when designing the rock slope. In addition, the stress change which may result from the natural disaster, such as precipitation, and the construction, can be expressed. Furthermore, as the complicated rock condition and the ground supporting effect can be considered through FEM, it is considered to be very useful in making an engineering decision on the cut-slope, reinforcement and so on.

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.