• Title/Summary/Keyword: Degraded document image binarization

Search Result 4, Processing Time 0.023 seconds

Stroke Width-Based Contrast Feature for Document Image Binarization

  • Van, Le Thi Khue;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.55-68
    • /
    • 2014
  • Automatic segmentation of foreground text from the background in degraded document images is very much essential for the smooth reading of the document content and recognition tasks by machine. In this paper, we present a novel approach to the binarization of degraded document images. The proposed method uses a new local contrast feature extracted based on the stroke width of text. First, a pre-processing method is carried out for noise removal. Text boundary detection is then performed on the image constructed from the contrast feature. Then local estimation follows to extract text from the background. Finally, a refinement procedure is applied to the binarized image as a post-processing step to improve the quality of the final results. Experiments and comparisons of extracting text from degraded handwriting and machine-printed document image against some well-known binarization algorithms demonstrate the effectiveness of the proposed method.

An Adaptive Binarization Algorithm for Degraded Document Images (저화질 문서영상들을 위한 적응적 이진화 알고리즘)

  • Ju, Jae-Hyon;Oh, Jeong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.581-585
    • /
    • 2012
  • This paper proposes an adaptive binarization algorithm which is highly effective for a degraded document image including printed Hangul and Chinese characters. Because of the attribute of character composed of thin horizontal strokes and thick vertical strokes, the conventional algorithms can't easily extract horizontal strokes which have weaker components than vertical ones in the degraded document image. The proposed algorithm solves the conventional algorithm's problem by adding a vertical-directional reference adaptive binarization algorithm to an omni-directional reference one. The simulation results show the proposed algorithm extracts well characters from various degraded document images.

DP-LinkNet: A convolutional network for historical document image binarization

  • Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1778-1797
    • /
    • 2021
  • Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.

Adaptive Binarization for Camera-based Document Recognition (카메라 기반 문서 인식을 위한 적응적 이진화)

  • Kim, In-Jung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.132-140
    • /
    • 2007
  • The quality of the camera image is worse than that of the scanner image because of lighting variation and inaccurate focus. This paper proposes a binarization method for camera-based document recognition, which is tolerant to low-quality camera images. Based on an existing method reported to be effective in previous evaluations, we enhanced the adaptability to the image with a low contrast due to low intensity and inaccurate focus. Furthermore, applying an additional small-size window in the binarization process, it is effective to extract the fine detail of character structure, which is often degraded by conventional methods. In experiments, we applied the proposed method as well as other methods to a document recognizer and compared the performance for many cm images. The result showed the proposed method is effective for recognition of document images captured by the camera.

  • PDF