• Title/Summary/Keyword: Degradation of Organic Waste

Search Result 101, Processing Time 0.024 seconds

Effect of Oxygen and Moisture on Stabilization of Municipal Solid Wastes in Landfill (폐기물매립지에 있어서 산소와 수분이 매립폐기물의 안정화에 미치는 영향)

  • Kim, Hye-Jin;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.139-150
    • /
    • 2006
  • Landfilling is one of the most widely used methods for the final disposal of solid wastes. Landfilled wastes are degraded by residing microorganisms and the microbial degradation is affected by many factors such as moisture, oxygen, pH, alkalinity, sulphate, nutrient, temperature, and so on. Especially among these factor, oxygen and moisture within aerobic landfill play a major role in microbial degradation. In this study, 1) the effects of oxygen on the velocity of waste degradation and 2) the effect of moisture on the degradation of municipal solids waste (MSW) in aerobic condition were investigated. It was found that the BOD and CODcr concentration from the leachate of aerobic lysimeters dropped faster by 80 days after the start of the test compared to those from the anaerobic lysimeters. To see the effect of moisture, four aerobic lysimeters filled with MSW and four different levels of moisture (20, 30, 40, and 50%) were installed. From this test, higher moisture in MSW produced higher $CO_2$ concentration, meaning moisture was effective for the microbial degradation. thus, we concluded that higher moisture level in the aerobic landfill might help early-stabilization microbial degradation.

  • PDF

Enhanced Anaerobic Degradation of Food Waste by Employing Rumen Microorganisms (Rumen 미생물을 이용한 주방폐기물 혐기성소화의 효율증진 방안)

  • Shin, Hang-Sik;Song, Young-Chae;Son, Sung-Sub;Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • Every year, over $3.37{\times}10^7$ ton of municipal solid waste is generated in Korea, of which about 28% is organic food waste from restaurant, dining halls and households etc. Methane conversion of the food waste by anaerobic digestion could be a viable approach for energy recovery as well as safe disposal of the waste. However, as food waste is composed of highmolecular complex polymers such as cellulose, lignin and protein, anaerobic digestion of food waste has not been efficient in terms of volumetric loading rate, solid retention time and extent of anaerobic degradation. In this research, the improved anaerobic degradation of food waste was attemped by applying rumen microorganisms to anaerobic digestion. Acidification efficiency of food waste by rumen microorganisms was compared with that of conventional acidogenesis. And optimum acidification conditions by rumen microorganisms were also determined. For the experiments, anaerobic batch reactors of 600 mL was fed with the processed (dried and milled) food waste obtained from a restaurant. Ultimate volatile fatty acid (VFA) yield produced by rumen microorganisms was about 8.4 meq VFA/g volatile solid (VS) that is 95% of the theoretical value. This yield was not much different from that of conventional acidogenesis, but hydrolysis rate was about twice faster. Cumulative VFA concentration increased from 66 meq/L to 480 meq/L, when the initial TS was increased from 1% to 15%. But VFA yield at 15% TS was half of that at 1% TS. This inhibition on the acidification might be caused by the rapid drop of pH and higher concentration of nonionized VFA. Optimal pH and temperature range for the acidification were about 6.0~7.5 and $35{\sim}45^{\circ}C$, respectively.

  • PDF

To develop the classification method of Agricultural by-productions for biogas production

  • Kim, Minjee;Kim, Sanghun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.155-160
    • /
    • 2015
  • The objective of this study was to develop the classification method of various organic wastes. Specifically, the effects of proximate composition on the biogas production and degradation rates of agricultural by-production was investigated and a new standards for mixture of various organic wastes based on proximate composition combination was developed. Agricultural by-products (ABPs) with medium total carbohydrate, medium crude protein and low fat contents demonstrated the single step digestion process. ABPs with low total carbohydrate, high crude protein and high fat contents demonstrated the two step digestion process of Diauxic growth. The single ABP (Class No. 15) and the mixed ABPs (Class No. 12+18, 6+12+22, 9+12+18) after 10days showed the similar biogas yield pattern. We can use the classification method for the more ABPs and organic wastes from factory and municipal waste treatment plant for the high efficient biogas production.

Treatment of Polyester Weight Loss Wastewater Using Strains Degrading Ethylene Glycol and Terephthalic Acid (Ethylene Glycol과 Terephthalic Acid 분해균주를 이용한 감량가공폐수처리)

  • 서승교
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.43-48
    • /
    • 2001
  • Terephthalic acid and ethylene glycol resulting form the weight-reduction process of polyester make trouble in the operation of activated sludge process. Also, polyester weight loss wastewater shows high pH, high organic strength and wide variation of organic loading. Therefore, this study was conducted in order to improve treatment efficiency by activated sludge process with Pseudomonas sp degrading components of polyester weight loss wastewater. The CO $D_{Mn}$ and BO $S_{5}$ of the waste wastewater were 560~3,000 mg/$\ell$ and 8000~3,000 mg/$\ell$, respectively. pH was 11.8~12.3. COD removal efficiency by activated sludge-coagulation process with Pseudomonas sp was 94.1~95.8% for 35 hr of hydraulic retention time. Total organic carbon removal efficiency was 97.1%. Ethylene glycol and terephthalic acid in the wastewater were completely degraded during 32 hr of hydraulic retention time.e.

  • PDF

A Transdisciplinary Approach for Water Pollution Control: Case Studies on Application of Natural Systems

  • Polprasert, Chongrak;Liamlaem, Warunsak
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.185-195
    • /
    • 2014
  • Despite the enormous technical and economic efforts to improve environmental conditions, currently about 40% of the global population (or 2 billion people) are still lack access to safe water supply and adequate sanitation facilities. Pollution problems and transmission of water- related diseases will continue to proliferate. The rapid population growth and industrialization will lead to a reduction of arable land, thus exacerbating the food shortage problems and threatening environmental sustainability. Natural systems in this context are a transdisciplinary approach which employs the activities of microbes, soil and/or plants in waste stabilisation and resource recovery without the aid of mechanical or energy-intensive equipments. Examples of these natural systems are: waste stabilisation ponds, aquatic weed ponds, constructed wetlands and land treatment processes. Although they require relatively large land areas, the natural systems could achieve a high degree of waste stabilisation and at the same time, yield potentials for waste recycling through the production of algal protein, fish, crops, and plant biomass. Because of the complex interactions occurring in the natural systems, the existing design procedures are based mainly on empirical or field experience approaches. An integrated kinetic model encompassing the activities of both suspended and biofilm bacteria and some important engineering parameters has been developed which could predict the organic matter degradation in the natural systems satisfactorily.

Effects of microplastics and salinity on food waste processing by black soldier fly (Hermetia illucens) larvae

  • Cho, Sam;Kim, Chul-Hwan;Kim, Min-Ji;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Background: The black soldier fly (Hermetia illucens) is gaining attention as an efficient decomposer of food waste. However, recalcitrant compounds such as plastics mixed into food waste may have negative effects on its growth and survival. Moreover, its efficiency of food waste degradation may also be affected by plastics. In addition, salt (NaCl) can also be present in high concentrations, which also reduces the efficiency of H. illucens-mediated food waste treatment. In this study, we assessed the growth of black soldier fly larvae (BSFL) reared on food waste containing polyethylene (PE) and polystyrene (PS) and NaCl. The weight of BSFL was measured every 2-4 days. Survival and substrate reduction rates and pupation ratio were determined at the end of the experiment. Results: The total larval weight of Hermetia illucens reared on food waste containing PS was greater than that of the control on days 20 and 24. However, the survival rate was lower in the group treated with 5% PS, as was substrate reduction in all PS-treated groups. The weight of BSFL reared on food waste containing PE was lower than that of the control on day 6. PE in food waste did not affect the survival rate, but the pupation ratio increased and substrate consumption decreased with increasing PE concentrations. Regardless of the plastic type, the addition of NaCl resulted in decreased larval weight and pupation ratio. Conclusions: Larval growth of black soldier fly was inhibited not by plastics but by substrate salinity. Additional safety assessments of larvae reared on food waste containing impurities are needed to enable wider application of BSFL in vermicomposting.

Degradation Characteristics of Algae Coagulated with Poly Aluminum Chloride by Thermophilic Oxic Process (고온·호기법을 이용한 Poly Aluminum Chloride에 의해 응집된 조류의 분해특성)

  • Yang, Jae-Kyung;Choi, Kyung-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.1
    • /
    • pp.67-77
    • /
    • 1999
  • The biodegradation of algae coagulated with poly aluminum chloride(PAC) was investigated by using the thermophilic oxic process. The compositions of coagulated algae were 83.5% of water content, 24.6% of ash, 32% of organic carbon with in total solid, respectively. In present study, food waste oil was used for the increment of calorie of mixtures in order to accelate the microbial activity. As a result, the maximum temperature of mixtures was higher than $50^{\circ}C$ when the mixing ratio of food oil was over 10%. However the temperature indicated the lower than $50^{\circ}C$ when conditions of no mixing with waste food oil, and 5% of mixing ratio. Therefore, the optimum condition was 10% of the mixing ration at $217l{\cdot}m^{-3}{\cdot}min^{-1}$ of air supply rate. The conversion efficiency of carbon was highest as 92% at the optimum condition. And then water was evaluated from imxture without accumulation at 10% of mixing ratio. The thermophilic oxic process well conducted that is good process for the treatment of waste algae without effluents however it has to consider the retreatment of accumulated aluminum in the reactor.

  • PDF

Design of Ultra-sonication Pre-Treatment System for Microalgae CELL Wall Degradation

  • Yang, Seungyoun;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Lee, Sung Hwa
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This paper preproposal stage investigated the effect of different pre-treatments on microalgae cell wall, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. This Paper present optimum approach to degradation of the cell wall by ultra-sonication with practical design specification parameter for ultrasound based pretreatment system. As a result of this paper presents, a microalgae system in a wastewater treatment flowsheet for residual nutrient uptake can be justified by processing the waste biomass for energy recovery. As a conclusion on this result, Low energy harvesting technologies and pre-treatment of the algal biomass are required to improve the overall energy balance of this integrated system.

Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion

  • Choi, Yongjun;Ryu, Jeongwon;Lee, Sang Rak
    • Journal of Animal Science and Technology
    • /
    • v.62 no.1
    • /
    • pp.74-83
    • /
    • 2020
  • Organic waste used as a feedstock in the anaerobic digestion (AD), it includes carbon and nitrogen. Carbon and nitrogen have an effect on the various digestive characteristics during AD, however, the study is rare about those of the interaction. This study investigates the influence of carbon type and carbon to nitrogens (C/N ratios) on the AD characteristics of organic waste. Experimental treatments involved a combination of three carbon types with three C/N ratios. The AD tests were carried out using a 125-mL serum bottle at a constant temperature of 37℃ and moisture 95% for 18 days. Degradation pattern shows the difference among three-carbon treatments, the starch group was faster than other groups. Maximum methane production date was similar between starch (9.96 ± 0.05 day) and xylan group (10.0 ± 0.52 day), those of the cellulose group (14.6 ± 1.80 day) was slower than other groups (p < 0.05). The lag phase was only affected by the carbon type (p < 0.05). Ammonia nitrogen was mainly affected by nitrogen concentration regardless of carbon type (p < 0.05). This study showed that xylan is useful as feedstock in order to decrease the lag phase, and it showed that ammonia was independently affected by the nitrogen concentration.

The Methane Production from Organic Waste on Single Anaerobic Digester Equipped with MET (Microbial Electrochemical Technology) (미생물 전기화학 기술이 설치된 단일 혐기성소화조에서 유기성폐기물로부터 메탄생성)

  • Park, Jungyu;Tian, Dongjie;Lee, Beom;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.201-209
    • /
    • 2016
  • Theoretical maximum methane yield of glucose at STP (1 atm, $0^{\circ}C$) is 0.35 L $CH_4/g$ COD. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. A wide range of them have been reported according to experiments methods and types of organic matters. Recent year, a MET (Microbial electrochemical technology) is a promising technology for producing sustainable bio energies from AD via rapid degradation of high concentration organic wastes, VFAs (Volatile Fatty Acids), toxic materials and non-degradable organic matters with electrochemical reactions. In this study, methane yields of food waste leachate and sewage waste sludge were evaluated by using BMP (Biochemical Methane Potential) and continuous AD tests. As the results, methane production volume from the anaerobic digester equipped with MET (AD + MET) was higher than conventional AD in the ratio of 2 to 3 times. The actual methane yields from all experiments were lower than those of theoretical value of glucose. The methane yield, however, from the AD + MET occurred similar to the theoretical one. Moreover, biogas compositions of AD and AD + MET were similar. Consequently, methane production from anaerobic digester with MET increased from the result of higher organic removal efficiency, while, further researches should be required for investigating methane production mechanisms in the anaerobic digester with MET.