• Title/Summary/Keyword: Degradation model

Search Result 1,596, Processing Time 0.025 seconds

Development of Coil Breakage Prediction Model In Cold Rolling Mill

  • Park, Yeong-Bok;Hwang, Hwa-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1343-1346
    • /
    • 2005
  • In the cold rolling mill, coil breakage that generated in rolling process makes the various types of troubles such as the degradation of productivity and the damage of equipment. Recent researches were done by the mechanical analysis such as the analysis of roll chattering or strip inclining and the prevention of breakage that detects the crack of coil. But they could cover some kind of breakages. The prediction of Coil breakage was very complicated and occurred rarely. We propose to build effective prediction modes for coil breakage in rolling process, based on data mining model. We proposed three prediction models for coil breakage: (1) decision tree based model, (2) regression based model and (3) neural network based model. To reduce model parameters, we selected important variables related to the occurrence of coil breakage from the attributes of coil setup by using the methods such as decision tree, variable selection and the choice of domain experts. We developed these prediction models and chose the best model among them using SEMMA process that proposed in SAS E-miner environment. We estimated model accuracy by scoring the prediction model with the posterior probability. We also have developed a software tool to analyze the data and generate the proposed prediction models either automatically and in a user-driven manner. It also has an effective visualization feature that is based on PCA (Principle Component Analysis).

  • PDF

Modeling of Chlorine Disinfectant Decay in Seawater (해수에서의 소독제 거동 예측 모델에 관한 연구)

  • Han, Jihee;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Disinfectant/oxidation process is a crucial process in water treatment for supplying safe drinking water. Chlorination is still widely used for water treatment area due to its effectiveness on microbial inactivation and economic feasibility. Recently, disinfection concern in marine environment is increasing, for example, movement of hazardous marine organism due to ballast water, marine environmental degradation due to power plant cooling water discharge, and increase of the amount of disinfectant in the offshore plant. It is needed to conduct the assessment of disinfectant behavior and the development of disinfectant prediction model in seawater. The appropriate prediction model for disinfectant behavior is not yet provided. The objective of the study is to develop chlorine decay model in seawater. Various model types were applied to develop the seawater chlorine decay model, such as first order decay model, EPA model, and two-phase model. The model simulation indicated that chlorine decay in seawater is influenced by both organic and inorganic matter in seawater. While inorganic matter has a negative correlation with the chlorine decay, organic matter has a positive correlation with the chlorine decay.

Decision Tree State Tying Modeling Using Parameter Estimation of Bayesian Method (Bayesian 기법의 모수 추정을 이용한 결정트리 상태 공유 모델링)

  • Oh, SangYeob
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.243-248
    • /
    • 2015
  • Recognition model is not defined when you configure a model, Been added to the model after model building awareness, Model a model of the clustering due to lack of recognition models are generated by modeling is causes the degradation of the recognition rate. In order to improve decision tree state tying modeling using parameter estimation of Bayesian method. The parameter estimation method is proposed Bayesian method to navigate through the model from the results of the decision tree based on the tying state according to the maximum probability method to determine the recognition model. According to our experiments on the simulation data generated by adding noise to clean speech, the proposed clustering method error rate reduction of 1.29% compared with baseline model, which is slightly better performance than the existing approach.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Parametric Studies (비탄성 국부좌굴을 고려한 철골 모멘트 접합부의 회전능력에 대한 변수 연구)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.625-632
    • /
    • 2008
  • In the companion paper (Model Development), an analytical model estimating the available rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames was proposed. In this paper, two limit states were considered as the connection rotation capacity criteria: (i) strength degradation failure when the strength falls below the nominal plastic strength due to the local buckling of the beam's cross-section and (ii) low-cycle fatigue fracture caused by plastic strain accumulation at the buckled flange after only a few cycles of high-amplitude deformation. A series of analyses are conducted using the proposed model with two limit states under monotonic and cyclic loadings. Beam section geometric parameters, such as flange and web slenderness ratios, varied over the practical ranges of H-shapedbeams to observe their effect on the rotation capacity and low-cycle fatigue life of pre-qualified WUF-W connections.

The Fault Tolerant Evaluation Model due to the Periodic Automatic Fault Detection Function of the Safety-critical I&C Systems in the Nuclear Power Plants (원전 안전필수 계측제어시스템의 주기적 자동고장검출기능에 따른 고장허용 평가모델)

  • Hur, Seop;Kim, Dong-Hoon;Choi, Jong-Gyun;Kim, Chang-Hwoi;Lee, Dong-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.994-1002
    • /
    • 2013
  • This study suggests a generalized availability and safety evaluation model to evaluate the influences to the system's fault tolerant capabilities depending on automatic fault detection function such as the automatic periodic testings. The conventional evaluation model of automatic fault detection function deals only with the self diagnostics, and supposes that the fault detection coverage of self diagnostics is always constant. But all of the fault detection methods could be degraded. For example, the periodic surveillance test has the potential human errors or test equipment errors, the self diagnostics has the potential degradation of built-in logics, and the automatic periodic testing has the potential degradation of automatic test facilities. The suggested evaluation models have incorporated the loss or erroneous behaviors of the automatic fault detection methods. The availability and the safety of each module of the safety grade platform have been evaluated as they were applied the automatic periodic test methodology and the fault tolerant evaluation models. The availability and safety of the safety grade platform were improved when applied the automatic periodic testing. Especially the fault tolerant capability of the processor module with a weak self-diagnostics and the process parameter input modules were dramatically improved compared to the conventional cases. In addition, as a result of the safety evaluation of the digital reactor protection system, the system safety of the digital parts was improved about 4 times compared to the conventional cases.

Removal of Non-volatile Contaminant from Aquifer using Surfactant-enhanced Ozone Sparging (오존과 계면활성제를 이용한 대수층 내 비휘발성 물질 제거)

  • Yang, Su-Kyeong;Shin, Seung-Yeop;Kim, Heon-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.37-45
    • /
    • 2010
  • Surfactant-enhanced ozone sparging (SEOS), an advanced version of SEAS (surfactant-enhance air sparging) was introduced in this study for the first time for removal of non-volatile contaminant from aquifer. The advantages of implementing SEAS, enhanced air saturation and expanded zone of sparging influence, are combined with the oxidative potential of ozone gas. Experiments conducted in this study were tow fold; 1-dimensional column experiments for the changes in the gas saturation and contaminant removal during sparging, and 2-dimensional box model experiment for the changes in the size of zone of influence and contaminant removal. An anionic surfactant (SDBS, sodium dodecylbenzene sulfonate) was used to control surface tension of water. Fluorescein sodium salt was used as a representative of watersoluble contaminants, for its fluorescence which is easy to detect when it disappears due to oxidative degradation. Three different gases (air, high-concentration ozone gas, and low-concentration ozone gas) were used for the sparging of 1-D column experiment, while two gases (air and low-concentration ozone gas) were used for 2-D box model experiment. When SEOS was performed for the column and box model, the air saturation and the zone of influence were improved significantly compared to air sparging without surface tension suppression, resulted in effective removal of the contaminant. Based on the experiments observations conducted in this study, SEOS was found to maintain the advantages of SEAS with further capability of oxidative degradation of non-volatile contaminants.

Assessment of Gas Generation in Underground Repository of Low-Level Waste (저준위 방사성폐기물 처분장에서의 기체 발생 평가)

  • Cho, Chan-Hee;Kim, Chang-Lak;Lee, Myung-Chan;Park, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.79-92
    • /
    • 1996
  • In a repository containing low-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This paper describes a mathematical model designed to address gas generation by these mechanisms and assesses the potential effects of gas generation on the performance of a radioactive waste repository. The metal corrosion model incorporates a three-stage process encompassing aerobic and anaerobic corrosion regimes ; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. A prediction is made for gas concentrations and generation rates over an assessment period of ten thousand years in a radioactive waste repository. The results suggest that H$_2$will be the principal gas generated within the radioactive waste cavern.

  • PDF

Ultimate strength performance of tankers associated with industry corrosion addition practices

  • Kim, Do Kyun;Kim, Han Byul;Zhang, Xiaoming;Li, Chen Guang;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.507-528
    • /
    • 2014
  • In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSR-H) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures.

Study on the influence of flow blockage in severe accident scenario of CAP1400 reactor

  • Pengcheng Gao;Bin Zhang ;Jishen Li ;Fan Miao ;Shaowei Tang ;Sheng Cao;Hao Yang ;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.999-1008
    • /
    • 2023
  • Deformed fuel rods can cause a partial blockage of the flow area in a subchannel. Such flow blockage will influence the core coolant flow and further the core heat transfer during the reflooding phase and subsequent severe accidents. Nevertheless, most of the system analysis codes simulate the accident process based on the assumed flow blockage ratio, resulting in inconsistencies between simulated results and actual conditions. This paper aims to study the influence of flow blockage in severe accident scenario of the CAP1400 reactor. First, the flow blockage model of ISAA code is improved based on the FRTMB module. Then, the ISAA-FRTMB coupling system is adopted to model and calculate the QUENCH-LOCA-0 experiment. The correctness and validity of the flow blockage model are verified by comparing the peak cladding temperature. Finally, the DVI Line-SBLOCA accident is induced to analyze the influence of flow blockage on subsequent CAP1400 reactor core heat transfer and core degradation. From the results of the DVI Line-SBLOCA accident analysis, it can be concluded that the blockage ratio is in the range of 40%-60%, and the position of severe blockage is the same as that of cladding rupture. The blockage reduces the circulation area of the core coolant, which in turn impacts the heat exchange between the core and the coolant, leading to the early failure and collapse of some core assemblies and accelerating the core degradation process.

Reconstructed image quality enhancement by an improved pickup model in computational integral imaging (컴퓨터 집적 영상 기술에서 픽업 모델 개선에 의한 복원 화질 개선 방법)

  • Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1598-1603
    • /
    • 2011
  • This paper describes an enhancement method for a computational pickup model. The conventional computational pickup model utilizes the ray-trace model and the pinhole model. The conventional model is very useful, however, it suffers from quality degradation of reconstructed images at long distances. To overcome the problem, we propose an accurate pickup model. The proposed model includes integration of the rays incoming to a sensor that generates a pixel, resulting in robustness on the Aliasing artifact. To show the effectiveness of the proposed method, experimental results are carried out. The results indicated that the proposed method is superior to the conventional method.