• Title/Summary/Keyword: Degradation model

Search Result 1,590, Processing Time 0.032 seconds

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.

Investigation on the responses of offshore monopile in marine soft clay under cyclic lateral load

  • Fen Li;Xinyue Zhu;Zhiyuan Zhu;Jichao Lei;Dan Hu
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.383-393
    • /
    • 2024
  • Monopile foundations of offshore wind turbines embedded in soft clay are subjected to the long-term cyclic lateral loads induced by winds, currents, and waves, the vibration of monopile leads to the accumulation of pore pressure and cyclic strains in the soil in its vicinity, which poses a threat to the safety operation of monopile. The researchers mainly focused on the hysteretic stress-strain relationship of soft clay and kinds of stiffness degradation models have been adopted, which may consume considerable computing resources and is not applicable for the long-term bearing performance analysis of monopile. In this study, a modified cyclic stiffness degradation model considering the effect of plastic strain and pore pressure change has been proposed and validated by comparing with the triaxial test results. Subsequently, the effects of cyclic load ratio, pile aspect ratio, number of load cycles, and length to embedded depth ratio on the accumulated rotation angle and pore pressure are presented. The results indicate the number of load cycles can significantly affect the accumulated rotation angle of monopile, whereas the accumulated pore pressure distribution along the pile merely changes with pile diameter, embedded length, and the number of load cycles, the stiffness of monopile can be significantly weakened by decreasing the embedded depth ratio L/H of monopile. The stiffness degradation of soil is more significant in the passive earth pressure zone, in which soil liquefaction is likely to occur. Furthermore, the suitability of the "accumulated rotation angle" and "accumulated pore pressure" design criteria for determining the required cyclic load ratio are discussed.

Electrical Characteristics of IGBT for Gate Bias under ${\gamma}$ Irradiation (게이트바이어스에서 감마방사선의 IGBT 전기적특성)

  • Lho, Young-Hwan;Lee, Sang-Yong;Kim, Jong-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.165-168
    • /
    • 2008
  • The experimental results of exposing IGBT (Insulated Gate Bipolar Transistor) samples to gamma radiation source show shifting of threshold voltages in the MOSFET and degradation of carrier mobility and current gains. At low total dose rate, the shift of threshold voltage is the major contribution of current increases, but for more than some total dose, the current is increased because of the current gain degradation occurred in the vertical PNP at the output of the IGBTs. In the paper, the collector current characteristics as a function of gate emitter voltage (VGE) curves are tested and analyzed with the model considering the radiation damage on the devices for gate bias and different dose. In addition, the model parameters between simulations and experiments are found and studied.

  • PDF

Research of Degradation Properties on Stator Coil of Traction Motor (견인전동기 고정자 코일의 열화특성 연구)

  • Jang, Dong-Uk;Byun, Yeun-Sub;Wang, Jong-Bae;Park, Hyun-June;Kim, Gil-Dong;Han, Young-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1430-1432
    • /
    • 2001
  • In this paper, 200-class insulation system for form-wound stator coils is designed for form-wound stator coils is designed for AC traction driven with VVVF inverter. Model coils are made to embody all essential elements representing a winding insulation system and structure. Acceleration degradation for model coils is applied exposure to heat(235$^{\circ}C$). In order to investigate the condition of the coils and to determine their insulation reliability, high voltage test and the dielectric properties such as dielectric loss and capacitance are performed. Also, partial discharge measurement is investigated for internal defects.

  • PDF

Prediction of Compressor Fouling Using an Analytic Method (해석적 방법을 통한 압축기의 파울링 해석)

  • Song, Tae Won;Kim, Tong Seop;Kim, Jae Hwan;Ro, Sung Tack
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.176-183
    • /
    • 2000
  • The performance of gas turbines decreases as their operating hours increase. Compressor fouling is the main reason for this time-dependent performance degradation. Airborne particles adhere to the blade surface and results in the change in the blade shape. It is difficult to exactly analyze the mechanism of the compressor fouling because the growing process of the fouling is very slow and the dimension of the fouled depth is very small compared with blade dimensions. In this study, an analytic method to predict the motion of particles and their deposition inside axial flow compressors is proposed. The analytic model takes into account the blade shape and the flow within the blade passage. Comparison of simulation result with field data shows the feasibility of the model. Influence of the particle distribution on the compressor fouling is also examined.

  • PDF

Development of Insulation Degradation Diagnosis System for Electrical Plant

  • Kim, Yi-Gon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.33-37
    • /
    • 2002
  • Insulation aging diagnosis system provides early warning regarding electrical equipment defects. Early warning is very important in that it can avoid great losses resulting from unexpected shutdown of the production line. Since relations of insulation aging and partial discharge dynamics are non-linear. it is very difficult to provide early warning in an electrical equipment. In this paper, we propose the design method of insulation aging diagnosis system that use a electromagnetic wave and acoustic signal to diagnose an electrical equipment. Proposed system measures the partial discharge on-line from DAS(Data Acquisition System and acquires 2D patterns from analyzing it. For filtering the noise contained in sensor signals we used ICA algorithms. Using this data, we design of the neuro-fuzzy model that diagnoses an electrical equipment and is investigated in this paper. Validity of the new method is asserted by numerical simulation.

An iterative hybrid random-interval structural reliability analysis

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1061-1070
    • /
    • 2014
  • An iterative hybrid structural dynamic reliability prediction model has been developed under multiple-time interval loads with and without consideration of stochastic structural strength degradation. Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent interval load and structural strength are assumed as random variables. For structural reliability problem with random and interval variables, the interval variables can be converted to uniformly distributed random variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using the first order second moment method according to the stress-strength interference theory. Finally, the proposed method is verified by three examples which show that the method is practicable, rational and gives accurate prediction.

Improved modeling of non-hepatic cellular uptake and degradation of low density lipoprotein

  • Im, Gwang-Hui;Lee, Eun-Ju
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.524-527
    • /
    • 2002
  • An improved mathematical/kinetic model is proposed to describe receptor-mediated uptake and its degradation of LDL on human fibroblasts. The hierarchy of kinetic models is presented, which leads to the model introducing the parameter of degree of preferential insertion of recy치ed receptors to the surface of cell membrane. The results of its prediction were presented in various types of experimental and in various LDL concentrations. Its ability to predict Brown and Goldstein’s ample experimental data was excellent.

  • PDF

Prediction of Fatigue Life for Composite Rotor Blade of Multipurpose Helicopter Using Strength Degradation Model (강도저하모델을 이용한 다목적헬리콥터용 복합재로터깃 피로수명예측)

  • 권정호;서창원
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.50-59
    • /
    • 2001
  • The predictions of residual strength evolution and fatigue life of full scale composite rotor blade for multipurpose helicopter were studied using a strength degradation model. Flight-by-flight load spectrum was developed on the basis of FELIX standard spectrum data. The laminated structural analysis was also performed to obtain corresponding local stress and/or strain spectra for each ply of laminate skin and glass roving spar structures around the blade root where fatigue damage was severely anticipated.

  • PDF

Study on the First On-Orbit Solar Calibration Measurement of Ocean Scanning Multi-spectral Imager (OSMI)

  • Cho, Young-Min
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • The ocean Scanning Multi-spectral Imager (OSMI) is a payload on the KOrea Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring f the study of biological oceanography. OSMI performs solar and dark calibrations for on-orbit instrument calibration. The purpose of the solar calibration is to monitor the degradation of imaging performance for each pixel of 6 spectral bands and to correct the degradation effect on OSMI image during the ground station date processing. The design, the operation concept, and the radiometric characteristics of the solar calibration are investigated. A linear model of image response and a solar calibration radiance model are proposed to study the instrument characteristics using the solar calibration data. The performance of spectral responsivity and spatial response uniformity. The first solar calibration data and the analysis results are important references for further study on the on-orbit stability of OSMI response during its lifetime.