• Title/Summary/Keyword: Degradation model

Search Result 1,596, Processing Time 0.029 seconds

Analysis on Co-channel Interference of Human Body Communication Supporting IEEE 802.15.6 BAN Standard

  • Hwang, Jung-Hwan;Kang, Tae-Wook;Kim, Youn-Tae;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.439-449
    • /
    • 2015
  • Human body communication (HBC) is being recognized as a new communication technology for mobile and wearable devices in a body area network (BAN). This paper presents co-channel interference experienced by HBC supporting the physical layer in the IEEE 802.15.6 BAN standard. To analyze the co-channel interference, a co-channel interference model is introduced, and space-domain and time-domain parameters representing an interference environment are generated using the co-channel interference model. A new signal-to-interference ratio (SIR) parameter depending on the peak amplitudes of the data signals causing co-channel interference is defined; co-channel interference can be easily analyzed and modelled using the newly defined SIR. The BER degradation model derived using the co-channel interference model and SIR in this paper can be effectively used to estimate the performance.

Remaining useful life prediction for PMSM under radial load using particle filter

  • Lee, Younghun;Kim, Inhwan;Choi, Sikgyoung;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.799-805
    • /
    • 2022
  • Permanent magnet synchronous motors (PMSMs) are widely used in systems requiring high control precision, efficiency, and reliability. Predicting the remaining useful life (RUL) with health monitoring of PMSMs prevents catastrophic failure and ensures reliable operation of system. In this study, a model-based method for predicting the RUL of PMSMs using phase current and vibration signals is proposed. The proposed method includes feature selection and RUL prediction based on a particle filter with a degradation model. The Paris-Erdogan model describing micro fatigue crack propagation is used as the degradation model. An experimental set-up to conduct accelerated life test, capable of monitoring various signals was designed in this study. Phase current and vibration data obtained from an accelerated life test of the PMSMs were used to verify the proposed approach. Features extracted from the data were clustered based on monotonicity and correlation clustering, respectively. The results identify the effectiveness of using the current data in predicting the RUL of PMSMs.

A Study of Physical Condition Predicting Model Development of Plastic Pipes in Water Mains (플라스틱 관종의 물리적 상태예측모형 개발)

  • Ki, Nam-Yeoun;Bae, Cheol-Ho;Lee, Doo-Jin;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.871-881
    • /
    • 2012
  • This study suggested a model that can predict a degradation condition over time of two plastic pipes, PE and PVC, which are currently used in the country. This study was analyzed physical characteristics change of plastic pipes by comparison with initial physical characteristics (on the case of new pipes). Since this is dependent on accidents that already occurred, there are limitations that it only decides a priority on improvement based on relative corrosion status rather than precautionary aspects. The comparison results between physical degradation by the deducted performance rating and a conventional numerical scoring method showed that correlation coefficient was 0.67 for PE pipes and 0.86 for PVC pipes, indicating a high correlation. According to this result, it has been decided that the performance rating suggested herein can be applied naturally to the criterion of an improvement decision, which was based on Scoring System. From results of the research, it is expected that a reliable result can be provided to an improvement decision process related to degradation of plastic pipes by comprehensively comparing and evaluating a condition of pipe materials(direct factors) and an environmental impact(indirect factors).

A Comparative Study of the Linear-elastic and Hyperelastic Models for Degradation of PLA Prepared using Fused Filament Fabrication (FFF 방식으로 제작된 PLA의 열화에 따른 선형탄성 및 초탄성 모델의 비교에 관한 연구)

  • Choi, Na-Yeon;Shin, Byoung-Chul;Zhang, Sung-Uk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • Fused filament fabrication (FFF) is a process extruding and stacking materials. PLA materials are one of the most frequently used materials for FFF method of 3D printing. Polylactic acid (PLA)-based materials are among the most widely used materials for FFF-based three-dimensional (3D) printing. PLA is an eco-friendly material made using starch extracted from corn, as opposed to plastic made using conventional petroleum resin; PLA-based materials are used in various fields, such as packaging, aerospace, and medicines. However, it is important to analyze the mechanical properties of theses materials, such as elastic strength, before using them as structural materials. In this study, the reliability of PLA-based materials is assessed through an analysis of the changes in the linear elasticity of these materials under thermal degradation by applying a hyperelastic analytical model.

A Study on Accelerated Photo-Degradation Test for Lifetime Estimation of Ink-jet Ink (잉크젯 잉크의 수명예측을 위한 광열화 가속시험법에 관한 연구)

  • Koo, Hyun-Jin;Cho, Hang-Won;Ji, Byung-Chul
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.154-162
    • /
    • 2015
  • We have performed accelerated photo-degradation test using a 10-Sun level high irradiance $Weather-Ometer^{(R)}$ (10-Sun Ci5000) in an attempt to study acceleration and correlation between accelerated and service conditions for ink-jet ink. The accelerated test was used to predict lifetimes of ink-jet ink through the calculation of scaling factor for intensity of irradiance and duration of usage combined with estimation of lifetime distribution and inverse power model as a life-stress model. The lifetimes and acceleration factors for foreign and domestic inks were compared with each other. The results showed that the failure mechanisms and life-stress models for ink-jet ink were different among the color of ink which means that we might be in need of further study by color of inks.

A Study on Reliability Assessment of Ag-free Solder (무은 솔더의 신뢰성 평가에 관한 연구)

  • Kim, Jong-Min;Kim, Gi-Young;Kim, Kang-Dong;Kim, Seon-Jin;Jang, Joong Soon
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.109-116
    • /
    • 2013
  • The solder is any of various fusible alloys, usually tin and lead, used to join metallic parts that provide the contact between the chip package and the printed circuit board. Solder plays an important role of electrical signals to communicate between the two components. In this study, two kinds of Ag-free solder as sample is made to conduct the thermal shock test and the high humidity temperature test. Low resistance is measured to estimate crack size of solder, using daisy chain. The low speed shear test is also performed to analyze strength of solder. The appropriate degradation model is estimated using the result data. Depending on the composition of solder, lifetime estimation is conducted by adopted degradation model. The lifetime estimated two kinds of Ag-free solder is compared with expected lifetime of Sn-Ag-Cu solder. The result is that both Ag-free composition are more reliable than Sn-Ag-Cu solder.

Inelastic displacement ratios for evaluation of stiffness degrading structures with soil structure interaction built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.741-758
    • /
    • 2013
  • In this study, inelastic displacement ratios are investigated for existing systems with known lateral strength considering soil structure interaction. For this purpose, SDOF systems for period range of 0.1-3.0 s with different hysteretic behaviors are considered for a number of 18 earthquake motions recorded on soft soil. The effect of stiffness degradation on inelastic displacement ratios is investigated. The Modified Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. Soil structure interaction analyses are conducted by means of equivalent fixed base model effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. A new equation is proposed for inelastic displacement ratio of system with SSI with elastoplastic or degrading behavior as a function of structural period ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}$/T). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Hygrothermal effect on the moisture absorption in composite laminates with transverse cracks and delamination

  • Kesba, Mohamed Khodjet;Benkhedda, A.;Adda bedia, E.A.;Boukert, B.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.315-331
    • /
    • 2019
  • The stiffness degradation of the cross-ply composite laminates containing a transverse cracking and delamination in $90^{\circ}$ layer is predicted by using a modified shear-lag model by introducing the stress perturbation function. The prediction shows better agreement with the experimental results published by Ogihara and Takeda 1995, especially for laminates with thicker $90^{\circ}$ plies in which extensive delamination occurs. A homogenised analytic model for average transient moisture uptake in composite laminates containing periodically distributed matrix cracks and delamination is presented. It is shown that the model well describes the moisture absorption in a cross-ply composite laminate containing periodically distributed transverse matrix cracks in the $90^{\circ}$ plies. The obtained results represent well the dependence of the stiffness degradation on the crack density, thickness ratio and moisture absorption. The present study has proved to be important to the understanding of the degradation of the material propertiesin the failure process when the laminates in which the delamination grows extensively.

The Evaluation of Partially Degraded Material Using Nonlinear Propagation Characteristics of Ultrasonic Wave (초음파 비선형 전파특성을 이용한 부분 열화 재료의 평가)

  • Kim, Kyung-Cho;Jhang, Kyung-Young;Hisashi, Yamawaki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.214-219
    • /
    • 2001
  • In this paper, the nonlinear behavior of ultrasonic wave in partially degraded material is considered. For this aim, FDM(finite difference method) model for the nonlinear wave equation was developed with the restriction to the 1-D longitudinal wave motion and how the partial degradation in material contributes to the detected nonlinear parameter was analyzed quantitatively. In order to verify the rightness of this simulation method, the relation between the detected nonlinear parameter and the continuous distribution of degradation obtained from simulation was compared with experiment results and the simulation and experiment results showed similar tendency. It can be known from simulation result that the degree of degradation, the range of degradation and the continuous distribution of degradation have strong correlation with the detected nonlinear parameter. As it was possible in these simulations that only special part is assumed as degraded one, the quantitative evaluation of partially degraded material may be obtained by using this method.

Service-life Prediction of Reinforced Concrete Structures in Subsurface Environment (지중 환경하에서의 철근콘크리트 구조물의 열화인자별 한계수명 평가)

  • Kwon, Ki-jung;Jung, Haeryong;Park, Joo-Wan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • This paper focuses on the estimation of durability and service-life of reinforced concrete structures in Wolsong Low- and intermediate-level wastes Disposal Center (WLDC) in Korea. There are six disposal silos located in the saturated environment. The silo concrete is degraded due to reactions with groundwater and chemical attacks, and finally it will lose its properties as a transport barrier. The infiltration of sulfate and magnesium, leaching of potassium hydroxide, and chlorine induced corrosion are the most significant factors for degradation of reinforced concrete structure in underground environment. From the result of evaluation of the degradation time for each factor, the degradation rate of the reinforced concrete due to sulfate and magnesium is $1.308{\times}10^{-3}cm/yr$, and it is estimated to take 48,000 years for full degradation while potassium hydroxide is leached in depth of less than 1.5 cm at 1,000 years after the initiation of degradation. In case of chlorine induced corrosion, it takes 1,648 years to initiate corrosion in the main reinforced bar and 2,288 years to reach the lifetime limit of the structural integrity, and thus it is evaluated as the most significant factor.