• Title/Summary/Keyword: Degradation factor

Search Result 959, Processing Time 0.029 seconds

Study on Degradation Characteristic of Plastic Artwork for Conservation (플라스틱 작품 보존을 위한 열화 특성 연구)

  • Yu, Ji A;Cho, Ha Jin;Han, Ye Bin;Lee, Hyun Ju;Lee, Sang Jin;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • Plastic artwork can be appeared crack, change of color and whitening event by various environment conditions. A large scale plastic artwork often exhibits in outside it will be directly degraded by physical and chemical degradation factor such as strong sunlight, high humidity and rainfall. We should know degradation characteristic of plastics to prevent these damages. In this study, we studied degradation characteristic of plastics (5 types of wide use plastics; polypropylene, polystyrene, polyethylene, polyvinyl chloride, polyurethane) depending on various artificial degradation conditions such as high temperature, ultraviolet and these complex conditions (high temperature and ultraviolet). As a result, polypropylene, polystyrene and polyethylene show the most visible change especially polypropylene, polystyrene. Polypropylene didn't show a great change degree of tensile strength and contact angle, on the other hand polystyrene did. Polypropylene and polystyrene weakened by photo degradation, polyvinyl chloride and polyurethane had relatively good light stability. Also the high temperature and complex conditions were most degradation characteristic. High temperature worked for degradation catalyst because its energy can not enough worked for cut off binding energy of plastics while ultraviolet condition effected as directly degradation condition. Though following results, we expect it can be applied to investigation of degradation factor depending on plastic artwork materials and basic result of plastic artworks conservation.

The degradation characteristics of waste cigarette filter in outdoor (실외에서 발생되는 폐 담배필터의 분해특성)

  • 김주학;윤오섭;이문수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.2
    • /
    • pp.136-143
    • /
    • 1999
  • This study was conducted to evaluate the degradation characteristics of waste cigarette filters under 0, 5, 10, and 15cm in depth from soil surface by environmental conditions. Weather was the most important factor during degradation of waste cigarette filters in this study. Bulking of cellulose acetate filaments exposed on soil surface was observed after 2 months, but the form of filter was kept up after 12 months. The treated cigarette filters in soil landfill revealed a little different degradation pattern at each soil landfill depth, The sample in 5cm depth of soil was more degraded then other site. A fluffy appearance of cellulose acetate filaments in the control filter rods was also developed more strongly in soil landfill then on soil surface. From the observation of waste cigarette filters by scanning electron microscopy, much degradation of the fiber of waste cigarette filters could be ascertained in soil landfill. The weight of waste cigarette filters under 5cm from soil surface was reduced about 50%, and the tensile strength of the samples in soil surface and under 5cm from soil surface were reduced 66.0% and 92.4%, respectively. The microbial experiment date that the viable cell number in microbial population and cellulolytic microorganisms showed the maximum values under 5cm from soil surface, suggest that microorganisms in soil play an important roll in the degradation of acetate cigarette filters.

  • PDF

Proteasome Inhibitor-Induced IκB/NF-κB Activation is Mediated by Nrf2-Dependent Light Chain 3B Induction in Lung Cancer Cells

  • Lee, Kyoung-Hee;Lee, Jungsil;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1008-1015
    • /
    • 2018
  • $I{\kappa}B$, a cytoplasmic inhibitor of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$), is reportedly degraded via the proteasome. However, we recently found that long-term incubation with proteasome inhibitors (PIs) such as PS-341 or MG132 induces $I{\kappa}B{\alpha}$ degradation via an alternative pathway, lysosome, which results in $NF-{\kappa}B$ activation and confers resistance to PI-induced lung cancer cell death. To enhance the anti-cancer efficacy of PIs, elucidation of the regulatory mechanism of PI-induced $I{\kappa}B{\alpha}$ degradation is necessary. Here, we demonstrated that PI up-regulates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via both de novo protein synthesis and Kelch-like ECH-associated protein 1 (KEAP1) degradation, which is responsible for $I{\kappa}B{\alpha}$ degradation via macroautophagy activation. PIs increased the protein level of light chain 3B (LC3B, macroautophagy marker), but not lysosome-associated membrane protein 2a (Lamp2a, the receptor for chaperone-mediated autophagy) in NCI-H157 and A549 lung cancer cells. Pretreatment with macroautophagy inhibitor or knock-down of LC3B blocked PI-induced $I{\kappa}B{\alpha}$ degradation. PIs up-regulated Nrf2 by increasing its transcription and mediating degradation of KEAP1 (cytoplasmic inhibitor of Nrf2). Overexpression of dominant-negative Nrf2, which lacks an N-terminal transactivating domain, or knock-down of Nrf2 suppressed PI-induced LC3B protein expression and subsequent $I{\kappa}B{\alpha}$ degradation. Thus, blocking of the Nrf2 pathway enhanced PI-induced cell death. These findings suggest that Nrf2-driven induction of LC3B plays an essential role in PI-induced activation of the $I{\kappa}B$/$NF-{\kappa}B$ pathway, which attenuates the anti-tumor efficacy of PIs.

Role of PI3-Kinase/Akt Pathway in the Activation of Etoposide-Induced $NF-{\kappa}B$ Transcription Factor

  • Choi Yong-Seok;Park Heon-Yong;Jeong Sun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.391-398
    • /
    • 2006
  • $NF-{\kappa}B$ is a transcription factor involved in the innate immunity against bacterial infection and inflammation. It is also known to render cells resistant to the apoptosis caused by some anticancer drugs. Such a chemoresistance of cancer cells may be related to the activation of $NF-{\kappa}B$ transcription factor; however, the mechanism of activation is not well understood. Here, we demonstrate that a chemotherapeutic agent, etoposide, independently stimulates the $I{\kappa}B{\alpha}$ degradation pathway and PI3-kinase/Akt signaling pathway: The classical $I{\kappa}B{\alpha}$ degradation pathway leads to the nuclear translocation and DNA binding of p65 subunit through $IKK{\beta}$ kinase, whereas the PI3-kinase/Akt pathway plays a distinct role in activating this transcription factor. The PI3-kinase/Akt pathway acts on the p50 subunit of the $NF-{\kappa}B$ transcription factor and enhances the DNA binding affinity of the p50 protein. It may also explain the role of the PI3-kinase/Akt pathway in the anti-apoptotic function of $NF-{\kappa}B$ during chemoresistance of cancer cells.

The Study on Interpretation of the Scatter Degradation Factor using an additional Filter in a Medical Imaging System (의료 영상 시스템에서 부가 필터를 이용한 산란 열화 인자의 해석에 관한 연구)

  • Kang, Sang Sik;Kim, Kyo Tae;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.589-596
    • /
    • 2019
  • X-rays used for diagnosis have a continuous energy distribution. However, photons with low energy not only reduce image contrast, but also contribute to the patient's radiation exposure. Therefore, clinics currently use filters made of aluminum. Such filters are advantageous because they can reduce the exposure of the patient to radiation. However, they may have negative effects on imaging quality, as they lead to increases in the scattered dose. In this study, we investigated the effects of the scattered dose generated by an aluminum filter on medical image quality. We used the relative standard deviation and the scatter degradation factor as evaluation indices, as they can be used to quantitatively express the decrease in the degree of contrast in imaging. We verified that the scattered dose generated by the increase in the thickness of the aluminum filter causes degradation of the quality of medical images.

Accelerated Degradation Stress of High Power Phosphor Converted LED Package (형광체 변환 고출력 백색 LED 패키지의 가속 열화 스트레스)

  • Chan, Sung-Il;Jang, Joong-Soon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.19-26
    • /
    • 2010
  • We found that saturated water vapor pressure is the most dominant stress factor for the degradation phenomenon in the package for high-power phosphor-converted white light emitting diode (high power LED). Also, we proved that saturated water vapor pressure is effective acceleration stress of LED package degradation from an acceleration life test. Test conditions were $121^{\circ}C$, 100% R.H., and max. 168 h storage with and without 350 mA. The accelerating tests in both conditions cause optical power loss, reduction of spectrum intensity, device leakage current, and thermal resistance in the package. Also, dark brown color and pore induced by hygro-mechanical stress partially contribute to the degradation of LED package. From these results, we have known that the saturated water vapor pressure stress is adequate as the acceleration stress for shortening life test time of LED packages.

Degradation Characteristics according to Encapsulant Materials Combining with Transparent Backsheet on the Mini Shingled Si Photovoltaic Modules (투명 백 시트와 봉지재 물질 조합에 따른 소형 슁글드 실리콘 태양전지 모듈의 열화 특성 분석)

  • Son, Hyung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.12-16
    • /
    • 2020
  • This study investigates the degradation characteristics of different material types of ethyl vinyl acetate (EVA) and polyolefin (POE) with combining transparent backsheet. To this end, we fabricated samples with structure of glass/encapsulant/transparent backsheet for each type of encapsulants, and shingled Si modules with the same structure. The samples were then subjected to accelerated test by storing under damp heat condition of 85℃ and 85% RH. As a result, encaplsulant discoloration was observed, which the transmittance of the samples with EVA decreased in a rapid rate than the samples with POE. The discoloration also affected a power degradation of the shingled modules with a reduction of current density, resulting that the module with EVA showed more drop on the efficiency than the modules with POE. Furthermore, corrosion of the soldered ribbon caused by acetic acid produced from the degraded EVA also contributed in fill factor reduction.

Aeration Factor Used To Design The Container Type of Biopile Systems for Small-Scale Petroleum-Contaminated Soil Projects

  • Jung, Hyun-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.316-319
    • /
    • 2011
  • Biopiles which offer the potential for cost-effective treatment of contaminated soils are above-ground, engineered systems that use oxygen to stimulate the growth and reproduction of aerobic bacteria for degradation of the petroleum constituents adsorbed to soil in excavated soils. This technology involves heaping contaminated soils into piles and stimulating aerobic microbial activity within the soils through the aeration and/or addition of minerals, nutrients, and moisture. Inside the biopile, microbially mediated reactions by blowing or extracting air through the pipes can enhance degradation of the organic contaminants. The influence of a aeration system on the biopile performance was investigated. Air pressure made to compare the efficiency of suction in the pipes showed that there were slightly significant difference between the two piles in the total amount of TPH biodegradation. The normalised degradation rate was, however, considerably higher in the aeration system than in the normal system without aeration, suggesting that the vertical venting method may have improved the efficiency of the biological reactions in the pile.

ATM cell transmission performance evaluation for co-channel interference in the next generation satellite B-ISDN/ATM networks (차세대 위성 B-ISDN/ATM 망에서 공동채널간섭에 대한 ATM 셀 전송 성능평가)

  • 김병균;김신재;최형진
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.9-18
    • /
    • 1998
  • For constructionof the next generation satellite B-ISDN/ATM networks considering integration with terrestrial information infrastructure networks, various high speed and wideband satellites with be launched and they will make used of frequency reue techniques for efficient management of limited frequency resource. Therefore, CCI(Co-Channel Interference) inherent in frequency reuse will be a dominant factor in performance degradation of satellite networks. This paper alanyzes the ATM cell transmission performance degradation caused by CCI. The satellite link, including up-link and down-link thermal noise, CCI, and nonlinear satellite transponder, is modeled and interleaving technique is used for compensating the ATM cell transmission performance degradation caused by burst error of satellite link. First, each satellite link subsystem is analyzed in detail and then end-to-end ATM cell transmission performance is evaluated with BER and CLR. Specifically, ATMcell transmission performance degradation caused by CCI is evaluated in detail.

  • PDF

A Study on the Complex Accelerating Degradation and Condition Diagnosis of Traction Motor for Electric Railway (전기철도용 견인전동기의 복합가속열화 상태진단에 관한 연구)

  • 왕종배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • In this study, the stator form-winding sample coils based on silicone resin and polyimide were made for fault prediction and reliability estimation on the C-Class(200$\^{C}$ ) insulation system of traction motors. The complex accelerative degradation was periodically performed during 10 cycles, which was composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, the condition diagnosis test such as insulation resistance '||'&'||' polarization index, capacitance '||'&'||' dielectric loss and partial discharge properties were investigated in the temperature range of 20 ∼ 160$\^{C}$. Relationship among condition diagnosis tests was analyzed to find a dominative degradation factor and an insulation state at end-life point.