• Title/Summary/Keyword: Degradation factor

Search Result 963, Processing Time 0.023 seconds

Degradation of synthetic dye in water by solution plasma process

  • Panomsuwan, Gasidit;Morishita, Tetsunori;Kang, Jun;Rujiravanit, Ratana;Ueno, Tomonaga;Saito, Nagahiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.888-893
    • /
    • 2016
  • In this study, the solution plasma process was utilized with the aim of degrading synthetic dyes in water at atmospheric pressure. The experiments were conducted in a batch-type reactor consisting of a symmetric wire-wire electrode configuration with rhodamine B (RhB) as the target synthetic dye. The effects of the plasma treatment time and initial dye concentration on the RhB degradation were investigated by monitoring the change in absorbance of RhB solutions. The RhB solutions turned lighter in color and finally colorless with prolonged plasma treatment time, indicating the destruction of dye molecules. The RhB solutions were found to have degraded, following the first-order kinetic process. However, for high initial RhB concentrations, another kinetic process or factor seems to play a dominant role at the initial degradation stage. The fitted first-order rate constant decreased as the initial concentration increased. This result suggests that the degradation behavior and kinetic process of the RhB solution strongly depends on its initial concentration. The RhB degradation is considered to be due to a combination of factors, including the formation of chemically oxidative species, as well as the emission of intense UV radiation and high-energy electrons from the plasma. We believe that the solution plasma process may prove to be an effective and environment-friendly method for the degradation or remediation of synthetic dye in wastewater.

Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Chen, Beibei;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1123-1133
    • /
    • 2021
  • Biodegradation is the key process involved in natural lignocellulose biotransformation and utilization. Microbial consortia represent promising candidates for applications in lignocellulose conversion strategies for biofuel production; however, cooperation among the enzymes and the labor division of microbes in the microbial consortia remains unclear. In this study, metagenomic analysis was performed to reveal the community structure and extremozyme systems of a lignocellulolytic microbial consortium, TMC7. The taxonomic affiliation of TMC7 metagenome included members of the genera Ruminiclostridium (42.85%), Thermoanaerobacterium (18.41%), Geobacillus (10.44%), unclassified_f__Bacillaceae (7.48%), Aeribacillus (2.65%), Symbiobacterium (2.47%), Desulfotomaculum (2.33%), Caldibacillus (1.56%), Clostridium (1.26%), and others (10.55%). The carbohydrate-active enzyme annotation revealed that TMC7 encoded a broad array of enzymes responsible for cellulose and hemicellulose degradation. Ten glycoside hydrolases (GHs) endoglucanase, 4 GHs exoglucanase, and 6 GHs β-glucosidase were identified for cellulose degradation; 6 GHs endo-β-1,4-xylanase, 9 GHs β-xylosidase, and 3 GHs β-mannanase were identified for degradation of the hemicellulose main chain; 6 GHs arabinofuranosidase, 2 GHs α-mannosidase, 11 GHs galactosidase, 3 GHs α-rhamnosidase, and 4 GHs α-fucosidase were identified as xylan debranching enzymes. Furthermore, by introducing a factor named as the contribution coefficient, we found that Ruminiclostridium and Thermoanaerobacterium may be the dominant contributors, whereas Symbiobacterium and Desulfotomaculum may serve as "sugar cheaters" in lignocellulose degradation by TMC7. Our findings provide mechanistic profiles of an array of enzymes that degrade complex lignocellulosic biomass in the microbial consortium TMC7 and provide a promising approach for studying the potential contribution of microbes in microbial consortia.

Storage Reliability Assessment of Springs for Turbo Engine Components (터보엔진 구성품용 스프링의 저장 신뢰성 평가)

  • Chang, Mu-Seong;Lee, Choong-Sung;Park, Jong-Won;Kim, You-Il;Kim, Sun Je
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.42-49
    • /
    • 2019
  • This paper presents a method to predict the storage reliability of springs for turbo engine components based on an accelerated degradation test. The reliability assessment procedure for springs is established to proceed with the accelerated degradation test. The spring constant is selected as the performance degradation characteristic, the temperature is determined to be the stress factor that deteriorates the spring constant. The storage tests are performed at three temperature test conditions. The spring constant is measured periodically to check the degradation status of the springs. Failure times of the springs are predicted by using the degradation model. Finally, the storage lifetime of the springs at normal use conditions is predicted using an accelerated model and failure times of all test conditions.

A Study on Isolation of BTEX Degrading Microorganism and Variation of BTEX Removal Efficiency and Microorganism Growth Rate According to Co-Culture (BTEX 분해미생물의 순수분리와 혼합 배양에 따른 기질 분해율 및 미생물 성장률 변화에 관한 연구)

  • Chung, Kyung-mi;Lee, Sang-hyup;Lee, Han-woong;Hong, Seok-won;Kim, Young-o;Choi, Yong-su;Yu, Myong-jin
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.347-352
    • /
    • 2005
  • The isolated microorganisms, Pseudomonas stutzeri, Raoultella planticola (Klebsiella), Serratia fonticola from petroleum contaminated soil were enriched on benzene, toluene, ethylbenzene, o-xylene as carbon and energy sources, respectively. And the degradation characteristics of BTEX was observed in the mixed BTEX substrates. We found that the BTEX in mixed substrates were degraded more than 50% by three isolated microorganisms. Among three isolated microorganisms, the highest degradation rate was observed in Pseudomonas stutzeri, but the degradation rate was different according to microorganisms. In order to increase the degradation efficiency, we applied the co-culture of isolated three microorganisms. The mixture rate of pseudomonas stutzeri : Raoultella planticola (Klebsiella) : Serratia fonticola was follows ; 1:2:1, 1:1:2, and 2:1:1, respectively. In two co-culture of 1:2:1 and 1:1:2, degradation rate was lower than isolated microorganisms. However, degradation rate became higher than isolated microorganisms and the degradation rate of benzene, toluene, and ethylene was more than 95% in co-culture of 2:1:1. The degradation rate increased through the co-culture of isolated microorganisms, however, the growth rate decreased. This was resulted from the substrate competition between microorganisms. The co-culture of microorganisms is a effective method to increase the degradation efficiency of BTEX and the co-culture mixing rate is a important factor for determination of degradation efficiency.

Effects of Glucose Degradation Products on Human Peritoneal Mesothelial Cells (포도당분해산물이 사람 복막중피세포 활성화에 미치는 영향)

  • Song, Jae-Sook;Lee, Kyung-Lim;Ha, Hunjoo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.308-314
    • /
    • 2005
  • Both high glucose and glucose degradation products (GDP) have been implicated in alterations of peritoneal membrane structure and function during long-term peritoneal dialysis (PD). The present study examined the role of GDP including methylglyoxal (MGO), acetaldehyde, and 3,4-dideoxyglucosone (3,4-DGE) in HPMC activation with respect to membrane hyperpermeability or fibrosis. The role of reactive oxygen species (ROS) and activation of protein kinase C (PKC) in GDP-induced HPMC activation were also examined. Using M199 culture medium as control, growth arrested and synchronized HPMC were continuously stimulated by MGO, acetaldehyde, and 3,4-DGE for 48 hours. Vascular endothelial growth factor (VEGF) was quantified as a marker of peritoneal membrane hyperpermeability and fibronectin and heat shock protein 47 (hsp47) as markers of fibrosis. Involvement of ROS and PKC was examined by the inhibitory effect of N-acetylcystein (NAC) or calphostin C, respectively. MGO significantly increased VEGF (1.9-fold), fibronectin (1.5-fold), and hsp47 (1.3-fold) secretion compared with control M199. NAC and calphostin C effectively inhibited MGO-induced VEGF upregulation. Acetaldehyde stimulated and 3,4-DGE inhibited VEGF secretion. Fibronectin secretion and hsp47 expression in HPMC were not affected by acetaldehyde or 3,4-DGE In conclusion, MGO upregulated VEGF and fibronectin secretion and hsp47 expression in HPMC, and PKC as well as ROS mediate MGO-induced VEGF secretion by HPMC. This implies that PKC activation and ROS generation by GDP may constitute important signals for activation of HPMC leading to progressive membrane hyperpermeability and accumulation of extracellular matrix and eventual peritoneal fibrosis.

Radiation Effects on ${\gamma}$-Ray Irradiated Ethylene Propylene Rubber using Dielectric Analysis

  • Kim, Ki-Yup;Ryu, Boo-Hyung;Lee, Chung;Lim, Kee-Joe
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.2
    • /
    • pp.48-54
    • /
    • 2003
  • To evaluate the radiation degradation of ethylene propylene rubber (EPR), radiation effects on EPR were investigated by using dielectric analysis and thermal-gravimetric analysis. Permittivity, loss factor, tan$\delta$, and thermal decomposition temperature were observed for ${\gamma}$-ray irradiated EPR. As the radiation dose was increased, the peak temperature of the loss factor and tans of EPR were increased and loss factor and tan$\delta$ at peak temperature were decreased. Activation energies were calculated using loss factor and thermal decomposition for ${\gamma}$-ray irradiated EPR as well. The trends of both calculated activation energies showed the same tendencies as radiation dose was increased.

Enhancement of Q Factor in Parallel-Branch Spiral Inductors (병렬분기 방법을 이용한 박막 나선 인덕터의 Q 인자 향상)

  • 서동우;민봉기;강진영;백문철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.83-87
    • /
    • 2003
  • In the present paper we suggested a parallel branch structure of aluminum spiral inductor for the use of RF integrated circuit at 1∼3 GHz. The inductor was implemented on p-type silicon wafer (5∼15Ω-cm) under the standard CMOS process and it showed a enhanced qualify(Q) factor by more than 10 % with no degradation of inductance. The effect of the structure modification on the Q factor and the inductance was scrutinized comparing with conventional spital inductors

Effects of HIF-1α/VP16 Hybrid Transcription Factor on Estrogen Receptor in MCF-7 Human Breast Cancer Cells

  • Cho, Jung-Yoon;Park, Mi-Kyung;Lee, Young-Joo
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.227-231
    • /
    • 2005
  • The estrogen receptor (ER) is activated and degraded by estrogen. We have examined ER downregulation and activation under hypoxia mimetic conditions. Cobalt chloride induced ER downregulation at 24 h of treatment. This degradation involved hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) as examined by using a constitutively active form of HIF-1$\alpha$, HIF-1$\alpha$/VP16, constructed by replacing the transactivation domain of HIF-1$\alpha$ with that of VP16. Western blot analysis revealed that E2-induced ER downregulation was observed within ${\~}6h$, whereas HIF-1$\alpha$/VP16-induced ER degradation was observed within 12${\~}$20h. HIF-1$\alpha$/VP16 activated the transcription of estrogen-responsive reporter gene in the absence of estrogen. These results suggest that ER downregulation and activation under hypoxia maybe mediated in part by a HIP-1$\alpha$ expression.

Analysis of Subthreshold Swings Based on Scaling Theory for Double Gate MOSFET (이중게이트 MOSFET의 스켈링 이론에 대한 문턱전압이하 스윙분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2267-2272
    • /
    • 2012
  • This study has presented the analysis of subthreshold swings based on scaling theory for double gate MOSFET. To solve the analytical potential distribution of Poisson's equation, we use Gaussian function to charge distribution. The scaling theory has been used to analyze short channel effect such as subthreshold swing degradation. These scaling factors for gate length, oxide thickness and channel thickness has been modified with the general scaling theory to include effects of double gates. We know subthreshold swing degradation is rapidly reduced when scaling factor of gate length is half of general scaling factor, and parameters such as projected range and standard projected deviation have greatly influenced on subthreshold swings.

Effect of Temperature on Treatment of Nitrogen and Phosphorus of Pig Wastewater in Bench Scale Reactor (실험실 수준의 반응조 온도가 양돈폐수중 질소, 인의 처리에 미치는 영향)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.1
    • /
    • pp.86-92
    • /
    • 1995
  • This study was performed to evaluate the effect of temperature on operating parameters for reactor in pig wastewater treatment using sequencing batch reactor method which is one of the biological treatment methods. Study was accomplished by experimental apparatus of bench scale, and the degradation rate coefficient and temperature correction factor were derived. The followings are the conclusions that were derived from this study. 1. In the characteristics of pig wastewater, concentrations of TKN and T-P were very high as 590 mg/l and 40 mg/l, respectively. 2. Removal efficiency of BOD and $COD_{Mn}$ as organic compound indicators were the highest mark as 97% at 25$\circ$C. 3. When temperature was incresed from 10$\circ$C to 25$\circ$C, removal efficiencies of TKN and T-P were proportionally increased. Especially, the former was greatly effected by temperature of reactor. 4. In experiment of bench scale, the degradation rate coefficients were increased as temperature increased, but decreased at the temperature range of 25~35$\circ$C. Temperature adjustment coefficients for $COD_{Mn}$, BOD, TKN and T-P were 1.1460, 1.1356, 1.1140 and 1.0565, respectively.

  • PDF