• Title/Summary/Keyword: Degradation

Search Result 13,644, Processing Time 0.046 seconds

Degradation of 2-chlorophenol by Ferrate(VI) (Ferrate(VI)를 이용한 2-chlorophenol의 분해특성 연구)

  • Choi, Hye-Min;Kwon, Jae-Hyun;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.63-74
    • /
    • 2011
  • The degradation characteristics of 2-chlorophenol(2-CP) by Ferrate(VI) were studied. The degradation efficiency of 2-CP in aqueous solution was investigated at various values of pH, Fe(VI) dosage, initial concentration and aqueous solution temperature. The maximum degradation efficiencies of 2-CP were obtained at pH 7.0 and aqueous solution temperature of 25$^{\circ}C$. The degradation efficiency was proportional to dosage of Fe(VI). Also, the initial rate constant of 2-CP degradation increased with decreasing of the 2-CP initial concentration. In addition, the degradation pathway study for 2-CP was conducted with GC-MS analysis. Acetic acid, formic acid, benzaldehyde and benzoic acid were identified as reaction intermediates of the 2-CP degradation by Ferrate(VI).

Kinetics of Thermal Degradation of Polypropylene/Nanoclay/Wood Flour Nanocomposites

  • Mohan, D. Jagan;Lee, Sun-Young;Kang, In-Aeh;Doh, Geum-Hyun;Park, Byung-Dae;Wu, Qinglin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.278-286
    • /
    • 2007
  • As a part of enhancing the performance of wood-plastic composites (WPC), polypropylene (PP)/ nanoclay (NC)/ wood flour (WF) nanocomposites were prepared using melt blending and injection molding process to evaluate their thermal stability. Thermogravimetric analysis (TGA) was employed to investigate thermal degradation kinetics of the nanocomposites both dynamic and isothermal conditions. Dynamic scans of the TGA showed an increased thermal stability of the nanocomposites at moderate wood flour concentrations (up to 20 phr, percentage based on hundred percent resin) while it decreased with the addition of 30 phr wood flour. The activation energy $(E_a)$ of thermal degradation of nanocomposites increased when nanoclay was added and the concentration of wood flour increased. Different equations were used to evaluate isothermal degradation kinetics using the rate of thermal degradation of the composites, expressed as weight loss (%) from their isothermal TGA curves. Degradation occurred at faster rate in the initial stages of about 60 min., and then proceeded in a gradual manner. However, nanocomposites with wood flour of 30 phr heated at $300^{\circ}C$ showed a drastic difference in their degradation behavior, and reached almost a complete decomposition after 40 min. of the isothermal heating. The degree of decomposition was greater at higher temperatures, and the residual weight of isothermal degradation of nanocomposites greatly varied from about 10 to 90%, depending on isothermal temperatures. The isothermal degradation of nanocomposites also increased their thermal stability with the addition of 1 phr nanoclay and of wood flour up to 20 phr. But, the degradation of PP100/NC1/MAPP3/WF30 nanocomposites with 30 phr wood flour occurs at a faster rate compared to those of the others, indicating a decrease in their thermal stability.

Degradation Characteristics of Carbon Dioxide Absorbents with Different Chemical Structures (상이한 화학적 구조를 가진 이산화탄소 흡수제의 열화특성)

  • Kim, Jun-Han;Lee, Ji-Hyun;Jang, Kyung-Ryong;Shim, Jae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.883-892
    • /
    • 2009
  • We evaluated the degradation properties of various alkanolamine absorbents (MEA, AMP, DEA, and MDEA) having different chemical structures for $CO_2$ capture. The degradation of $CO_2$ absorbent in general was known to be caused by oxygen which is in flue gas and by heat source, respectively. To analyze the effect of $CO_2$ and $O_2$ on degree of degradation, we conducted a variety of experiments at $30^{\circ}C$ and $60^{\circ}C$ (oxidative degradation) and $130^{\circ}C$ and $150^{\circ}C$ (thermal degradation), respectively. DEA showed the worst property for oxidative degradation in the presence of oxygen among the alkanolamine absorbents. In the case of thermal degradation, the degradation of absorbent was occurred for most of absorbents at $150^{\circ}C$. Among these absorbents, MEA and DEA gave the worst results. As a result, AMP which is a primary amine and having a steric hindrance showed the best result through the degradation test. But, the degradation of absorbent proceeded easily in the case of DEA which is a secondary amine and having 2 OH groups in terminal position. Consequently, we have evaluated the degree of degradation of various absorbents having different chemical structures to give the basic data for the development of alkanolamine absorbent.

HAZARD ASSESSMENT OF CURRENT STATE OF VEGETATION DEGRADATION USING GIS, A CASE STUDY: SADRA REGION, IRAN

  • Masoudi, Masoud;Amiri, E.
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • The entire land of Southern Iran faces problems arising out of various types of land degradation of which vegetation degradation forms one of the major types. The present work introduces a model developed for assessing the current status of hazard of vegetation degradation using Geographic Information System (GIS). This kind of assessment differs from those assessments based on vulnerability or potential hazard assessments. The Sadra watershed which covers the upper reaches of Marharlu basin, Fars Province, has been chosen for a hazard assessment of this type of degradation. The different kinds of data for indicators of current status of vegetation degradation were gathered from collecting of field data and also records of the governmental offices of Iran. Taking into consideration three indicators of current status of vegetation degradation the model identifies areas with different hazard classes. By fixing the thresholds of severity classes of the three indicators including per cent of vegetation cover, biomass production and ratio of actual biomass to potential biomass production, a hazard map for each indicator was first prepared in GIS. The final hazard map of current status of vegetation degradation was prepared by intersecting three hazards in the GIS. Results show areas under severe hazard class have been found to be widespread (89 %) while areas under moderate and very severe hazard classes have been found less extensive in the Sadra watershed. The preparation of hazard maps based on the GIS analysis of these indicators will be helpful for prioritizing the areas to initiate remedial measures.

Abiotic Degradation Degradation of the Herbicide Oxadiazon in Water

  • Rahman Md. Mokhlesur;Park, Jong-Woo;Park, Man;Rhee In-Koo;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.157-161
    • /
    • 2006
  • The performance of abiotic degradation of oxadiazon was investigated by applying zerovalent iron(ZVI), potassium permanganate($KMnO_4$) and titanium dioxide($TiO_2$) in the contaminated water. Experimental conditions allowed the disappearance of oxadiazon in the abiotic system. The degradation of this herbicide was monitored in buffer solutions having pH 3, 5 and 7 in the presence of iron powder in which the maximum degradation rate was achieved at acidic condition(pH 3) by 2% of ZVI treatment. The oxidative degradation of oxadiazon was observed in aqueous solution by $KMnO_4$ at pH 3, 7 and 10 in which the highest disappearance rate was found at neutral pH when treated with 2% of $KMnO_4$. The catalytic degradation of oxadiazon in $TiO_2$ suspension was obtained under dark and UV irradiation conditions. UV irradiation enhanced the degradation of oxadiazon in aquatic system in the presence of $TiO_2$. Conclusively, the remediation strategy using these abiotic reagents could be applied to remove oxadiazon from the contaminated water.

The Study on Drag Reduction Rates and Degradation Effects in Synthetic Polymer Solution with Surfactant Additives (계면활성제를 이용한 합성고분자 수용액의 마찰저항감소 및 퇴화 특성 향상 연구)

  • 이동민;김남진;윤석만;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.194-199
    • /
    • 2001
  • The turbulent flow resistance of water solution with polymer is reduced as compared with that of pure water. This effects is named th drag reduction and offers the significant reduction of the pumping power and the energy consumption. But the intense shear forces and the high temperature experienced by the polymer solution when passing through the pipes cause the degradation a loss of drag reduction effectiveness. Especially, the degradation behavior is found to be strongly dependent on temperature. This mechanical and thermal degradation can be avoided by adding materials such as surfactant to the polymer solution, which enhance the bonding force between molecules. In the present study, Copolymer and SDS were utilized and they were mixed in 10 different mixture ratios, while total concentration was fixed as 100wppm. Degradation of Copolymer-SDS mixture solutions was investigated experimentally in closed loop at the temperature of $10^{\circ}C\; and\; 80^{\circ}C$ with various flow average velocities of 1.5 m/sec, 3.0m/sec, and 4.5m/sec. Degradation characteristics of polymer solution without surfactant show a radical loss of drag reduction effectiveness at high temperature. Degradation alleviation ability of surfactant is especially effective at high temperature. Consequently, this results show that the addition of surfactant to the polymer solution can control unfavorable degradation phenomena for high temperature systems.

  • PDF

The Effects of Grain Size on the Degradation Phenomena of PZT Ceramics (입자의 크기가 PZT 세라믹스의 열화현상에 미치는 영향)

  • 정우환;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 1992
  • The effect of grain size on the time-dependent piezoelectrice degradation of a poled PZT of MPB composition Pb0.988Sr0.012 (Zr0.52Ti0.48)O3 with 2.4 mol% of Nb2O5 was studied, and the degradation mechanism was discussed. Changes in the internal bias field and the internal stress both responsible for the time-dependent degradation of poled PZT were examined by the polarization reveral technique, XRD and Vickers indentation, respectively. The piezoelectric degradation increased with increasing time and grain size, and the internal bias field due to space charge diffusion decreased with increasing grain size of poled PZT. The internal bias field, however, was almost insensitive to the degradation time regardless of the grain size. On the other hand, both the x-ray diffraction peak intensity ratio of (002) to (200) and the fracture behavior including the crack propagation support that the ferroelectric domain rearrangement of larger grain size showed rapid relaxation of the internal stress compared with smaller one, which is thought the origin of the larger piezoelectric degradation in the former. In conclusion, the contribution of space charge diffusion on the piezoelectric degradation of PZT is strongly dependent on both the grain size and the composition. Thus, the relaxation of internal stress due to the ferroelectric domain rearrangement as well as the amount and time-dependence of the internal bias field due to space charge diffusion should be considered simultaneously in the degradation mechanism of PZT.

  • PDF

Development of experiment technology for assessment of shotcrete lining long-term degradation in tunnels (터널 숏크리트 라이닝의 장기 내구성 평가를 위한 실험기법 개발)

  • Lim, Jong-Jin;Shin, Hyu-Soung;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.439-444
    • /
    • 2005
  • Shotcrete lining is likely to be deteriorated due to the ground water which the lining is exposed to. Some tunnel collapses seemed to be affected by shotcrete degradation were reported. But there isn't any assessment method of shotcret long-term degradation. So, Experimental technology for shotcrete long-term degradation modeling was developed in this study. The shotcrete long-term degradation modeling, developed in other study in Korea Institute of Construction Technology, require the time-history of volume change. Digital strain observation system was used to acquire the time-history of volume change. To verify the Strain Observation Digital System, the measurement using the system was compared to the one using a micrometer. Through this process, The experiment for shotcrete long-term degradation modeling was set up.

  • PDF

Identification of Receptor-like Protein for Fructose-1,6-bisphosphatase on Yeast Vacuolar Membrane

  • Ko, Je-Sang
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.448-453
    • /
    • 2000
  • In yeast the key gluconeogenic enzyme, fructose-1,6-bisphosphatase (FBPase), is selectively targeted from the cytosol to the lysosome (vacuole) for degradation when glucose starved cells are replenished with glucose. The pathway for glucose induced FBPase degradation is unknown. To identify the receptor-mediated degradation pathway of FBPase, we investigated the presence of the FBPase receptor on the vacuolar membrane by cell fractionation experiments and binding assay using vid mutant (vacuolar import and degradation), which is defective in the glucose-induced degradation of FBPase. FBPase sedimented in the pellets from vid24-1 mutant after centrifugation at $15,000{\times}g$ for 15 min, suggesting that FBPase is associated with subcellular structures. Cell fractionation experiments revealed that FBPase is preferentially associated with the vacuole, but not with other organelles in vid24-1. FBPase enriched fractions that cofractionated with the vacuole were sensitive to proteinase K digestion, indicating that FBPase is peripherally associated with the vacuole. We developed an assay for the binding of FBPase to the vacuole. The assay revealed that FBPase bound to the vacuole with a Kd of $2.3{\times}10^6M$. The binding was saturable and specific. These results suggest that a receptor for FBPase degradation exists on the vacuolar membrane. It implies the existence of the receptor-mediated degradation pathway of FBPase by the lysosome.

  • PDF

Photocatalytic and Sonophotocatalytic degradation of alachlor using different photocatalyst

  • Bagal, Manisha V.;Gogate, Parag R.
    • Advances in environmental research
    • /
    • v.2 no.4
    • /
    • pp.261-277
    • /
    • 2013
  • The degradation of alachlor has been investigated using sonolysis (US), photocatalysis (UV) and sonophotocatalysis (US/UV) using three photocatalyst viz. $TiO_2$ (mixture of anatase and rutile), $TiO_2$ (anatase) and ZnO. The effect of photocatalyst loading on the extent of degradation of alachlor has been investigated by varying $TiO_2$ (both types) loading over the range of 0.01 g/L to 0.1 g/L and ZnO loading over the range of 0.05 g/L to 0.3 g/L. The optimum loading of the catalyst was found to be dependent on the type of operation i.e., photocatalysis alone or the combined operation of sonolysis and photocatalysis. All the combined processes gave complete degradation of alachlor with maximum rate of degradation being obtained in the case of sonophotocatalytic process also showing synergistic effect at optimized loading of photocatalyst. About 50% to 60% reduction in TOC has been obtained using the combined process of sonophotocatalysis depending on the operating conditions. The alachlor degradation fitted first order kinetics for all the processes under investigation. It has been observed that the $TiO_2$ (mixtrure of anatase and rutile) is the most active photocatalyst among the three photocatalysts studied in the current work. The effect of addition of radical enhancers and scavengers on sonophotocatalytic degradation of alachlor has been investigated in order to decipher the controlling mechanism. The alachlor degradation products have been identified using LC-MS method.