• Title/Summary/Keyword: Deformed layer

Search Result 106, Processing Time 0.03 seconds

A Research on the Change of Cutting Characteristics in Hardened A17075-T6 Depending on Turning Conditions (선반 가공조건에 따른 경화처리된 A17075-T6 소재의 가공특성 변화에 관한 연구)

  • Lee, Hee-Deok;Kim, Jeong-Suk;Jeong, Ji-Hoon;Im, Hak-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.144-149
    • /
    • 2012
  • The cutting characteristics of hardened aluminum alloy A17075-T6 were investigated during turning processing. Under variation conditions of cutting speed, depth of cut, and feed rate, the characteristics of cutting force, surface roughness, and machined texture were investigated. Surface roughness became worse in proportion to the increase of the feed rate. The thickness of material alteration layer which is derived from the effect of cutting force was the biggest when feed rate 0.148mm/rev. This research confirmed that the deformed layer is dominantly dependent on the variation of feed rate.

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

A Study on Plastic Strain after Orthogonal Machining using Finite Element Analysis (유한요소법을 이용한 2차원 절삭가공면의 소성스트레인에 관한 연구)

  • 김기환;문상돈;신형곤;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.988-991
    • /
    • 2001
  • Plastically deformed layer influences the mechanical property of the mechanical element such as creep hardening, microscopical crack and stress corrosion destruction. Therefore, the property so called the surface integrity has to be considered, and the machined surface including plastic deformation, distribution of stress has to be conducted quantitatively. This paper explains the orthogonal cutting, and made an orthogonal cutting model using the finite element method, then analyzed cutting power, plastic deformation of workpiece. It introduces the developed subsequent recrystallizations technique for measurement of the plastic strain of machined surface, and verified the technique.

  • PDF

A Study on Plastic Strain after Orthogonal Machining using Finite Element Analysis (유한요소법을 이용한 절삭가공면의 소성스트레인에 관한 연구)

  • Shin, Hyung-Gon;Kim, Tae-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.69-75
    • /
    • 2003
  • Plastically deformed layer influences the mechanical property of the mechanical element such as creep hardening, microscopical crack and stress corrosion destruction. Therefore, the property so called the surface integrity has to be considered, and the machined surface including plastic deformation, distribution of stress has to be conducted quantitatively. This paper explains the orthogonal cutting, and made an orthogonal cutting model using the finite element method, then analyzed cutting power, plastic deformation of workpiece. It introduces the developed subsequent recrystallizations technique for measurement of the plastic strain of machined surface, and verified the technique.

  • PDF

A Study on Characteristics of the Precision Machined Surfaces by AFM Measurement (AFM 측정법에 의한 초정밀 가공면의 특성 평가 연구)

  • Kim, Jong-Kwan;Lee, Gab-Jo;Jung, Jong-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • High speed cutting is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. High speed cutting leaves a plastically deformed layer on the machined surface. This deformed layer affects in various forms to the surface roughness of machined parts such as the dimensional instability, the micro crack. The surface roughness is called surface integrity which is very important in precision cutting. This paper aims to study on the machined surfaces characteristics of aluminum alloy and brass by AFM(Atomic force microscope) measurement. The objective is contribution to ultra- precision cutting by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.

Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction (FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석)

  • YOO, BIN;LIM, KISUNG;JU, HYUNCHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.

ON COMPLEX VARIABLE METHOD IN FINITE ELASTICITY

  • Akinola, Ade
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.183-198
    • /
    • 2003
  • We highlight the alternative presentation of the Cauchy-Riemann conditions for the analyticity of a complex variable function and consider plane equilibrium problem for an elastic transversely isotropic layer, in finite deformation. We state the fundamental problems and consider traction boundary value problem, as an example of fundamental problem-one. A simple solution of“Lame's problem”for an infinite layer is obtained. The profile of the deformed contour is given; and this depends on the order of the term used in the power series specification for the complex potential and on the material constants of the medium.

Geomorphological Characteristics of the Water Spider Habitat in Yeoncheon (연천 은대리 물거미 서식지의 지형적 특성)

  • Yang, Jae-Hyuk
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.4
    • /
    • pp.77-88
    • /
    • 2018
  • Wetlandsis developing on the lava plateau in Eundae-ri, even though there are no majorstreams into this area. As a result of drilling, 1~2m clay layer is founded under the superficial formations of the wetland, which are the main reasons for formation of the wetlands by limiting vertical drainage. The clay layer's Granulometry/XRD show very different characteristics from in situ weathering of basalt, and since 2~3cm of sand layer exist within the profile, the clay layer seems to be supplied and deposited from outside through surface/sheet flows. To keep the wetlands sustainably, the supply of water into the wetlands has to be increased by restoring the surface/sheet flow which is limited or deformed by pavement road.

Microstructural Evolution with Annealing of Ultralow Carbon IF Steel Severely Deformed by Six-Layer Stack ARB Process (6층겹침ARB공정에 의해 강소성가공된 극저탄소IF강의 어닐링에 따른 미세조직 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.403-408
    • /
    • 2012
  • A sample of ultra low carbon IF steel was processed by six-layer stack accumulative roll-bonding (ARB) and annealed. The ARB was conducted at ambient temperature after deforming the as-received material to a thickness of 0.5 mm by 50% cold rolling. The ARB was performed for a six-layer stacked, i.e. a 3 mm thick sheet, up to 3 cycles (an equivalent strain of ~7.0). In each ARB cycle, the stacked sheets were, first, deformed to 1.5 mm thickness by 50% rolling and then reduced to 0.5 mm thickness, as the starting thickness, by multi-pass rolling without lubrication. The specimen after 3 cycles was then annealed for 0.5 h at various temperatures ranging from 673 to 973 K. The microstructural evolution with the annealing temperature for the 3-cycle ARB processed IF steel was investigated in detail by transmission electron microscopy observation. The ARB processed IF steel exhibited mainly a dislocation cell lamella structure with relatively high dislocation density in which the subgrains were partially observed. The selected area diffraction (SAD) patterns suggested that the misorientation between neighboring cells or subgrains was very small. The thickness of the grains increased in a gradual way up to 873 K, but above 898 K it increased drastically. As a result, the grains came to have an equiaxed morphology at 898 K, in which the width and the thickness of the grains were almost identical. The grain growth occurred actively at temperatures above 923 K.

A Study on Operation Condition of Blast Furnace According to Burden Distribution (장입물 층상구조에 따른 고로내 운전상황 변화 연구)

  • Yang, Kwang-Heok;Choi, Sang-Min;Jung, Jin-Kyung
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.145-150
    • /
    • 2006
  • At the furnace top, the distribution of charging coke and ore is adjusted to control the reducing gas flow distribution in the furnace. It is necessary to predict operation condition of blast furnace according to the burden profile to judge whether charging is properly conducted In this study, We propose the model for predicting while layer structures whithin furnace when top burden profile was given. Layer structure of coke and ore could be predicted by top burden profile and solid velocity. Solid velocity is assumed as potential flow. Potential function distribution and timeline are also calculated using solid velocity field. The Calculation is conducted for different burden profile cases. As the result burden distribution and grid structure, which is deformed to match the layer structure in shaft and deadman profile. Gas flow was calculated using this grid, and calculated results are compared with each other.

  • PDF