• Title/Summary/Keyword: Deformed Shape

Search Result 442, Processing Time 0.027 seconds

Design of Preform using equi-potential lines in Hot Forging (등전위면을 이용한 열간 단조에서의 예비형상 설계)

  • 이영규
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.71-74
    • /
    • 2000
  • The equi-potential lines designed in the electric field are introduced to find the preform shape in axisymmetric hot forging. The equi-potential lines generated between two conductors of different voltages show similar trends of the minimum work paths between the undeformed shape and the deformed shape. Base on this similarity the equi-potential lines obtained by arrangement of the initial and final shapes are utilized for the design of preform and then the artificial neural network is used to find the range of initial volume and potential value of the electric field.

  • PDF

A Study of the field distribution in focal plane for the shape deformations of Satellite antenna (위성 반사경 안테나 변형으로 인한 초점영역의 전자장 분포에 관한 연구)

  • Yi Sang-Hoi
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.36-47
    • /
    • 1995
  • The main purpose of this paper is to determine a new focal point and field distribution due to the shape deformation of reflector antenna by numerical method such as geometrical optics and the aperture field method. It is shown the 4 types deformations to be added into original shape of parabola antenna and offset antenna: linear, quadratic, cubic and hybrid distortion. These results can be applied to deformed reflector antenna in order to fit a focal point and radiation pattern.

  • PDF

Relation between shape of the articular eminence and disc displacement in the temporomandibular joint (측두하악관절에서 관절융기 형태와 관절원판 변위와의 연관성 연구)

  • Lee Heung-Ki;Hwang Eui-Hwan;Lee Sang-Rae
    • Imaging Science in Dentistry
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2001
  • Purpose : To investigate the hypothesis that the morphology of the articular eminence of the temporomandibular joint is a predisposing factor for disc displacement. Materials and Methods: MR images of 126 temporomandibular joints in 94 patients were analyzed to assess for morphology of the articular eminence and disc displacement. The displaced disc was further categorized as disc displacement with reduction (DDWR) and disc displacement without reduction (DDWOR). The morphology of the articular eminence was classified into four types; box, sigmoid, flattened, and deformed. The relationship between the four types of shape of the articular eminence and the two types of disc position was assessed. Results: In the DDWR and DDWOR groups, the morphology of articular eminence were a box type in 40.5%, a sigmoid type in 30.2%, a flattened type in 24.6%, and a deformed type in 4.7%. The box type of the articular eminence were 34.3% in the DDWR group and 42.9% in the DDWOR group. The sigmoid type of the articular eminence were 34.3% in the DDWR group and 28.6% in the DDWOR group. The flattened type of the articular eminence were 28.6% in the DDWR group and 23.1 % in the DDWOR group. The deformed type of articular eminence were 2.9% in the DDWR group and 5.5% in the DDWOR group. Conclusion: Disc displacement is more likely to be found in the temporomandibular joints with a box-shaped articular eminence. It can be considered that shape of the articular eminence is related to the development of disc displacement.

  • PDF

An Image Composition Technique using Water-Wave Image Analysis (물결영상 분석을 통한 이미지 합성기법에 관한 연구)

  • Li, Xianji;Kim, Jung-A;Ming, Shi-Hwa;Kim, Dong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.193-202
    • /
    • 2008
  • In this study, we want to composite the source image and the target image when the environment includes water surface in the target image such as lake, sea, etc. The water surface is different from other common environment. On the water surface, the object must be reflected or refract and sometimes is deformed by the wave of water. In order to composite the object in the source image onto the water image, we analyze the water surface of the target image and let the object be synthesized realistically based on the wave of water. Our composite process consists of three steps. First. we use Shape-from-Shading technique to extract the normal vector of the water surface in the target image. Next, the source image is deformed according to the normal vector map. Finally, we composite the deformed object onto the target image.

  • PDF

Thermomechanical Properties and Shape Memory Effect of Chemically Crosslinked EPDM (Nordel(R) IP) (화학적으로 가교된 EPDM (Nordel(R) IP)의 열적기계적 특성 및 형상기억거동)

  • Chang, Young-Wook;Han, Jung-Eun;Kang, Shin-Choon;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.217-223
    • /
    • 2007
  • Thermomechanical and shape memory properties of dicumyl peroxide(DCP) cured semicrystalline EPDM($Nordel^{(R)}$ IP) were investigated. From gel content analysis, it can be seen that Nordel can be crosslinked by small amount of DCP and the degree of crosslinking increased with the increase of DCP content. DSC analysis revealed that the melting temperature and degree of crystallinity of the crosslinked rubber decreased with the increase of DCP. Tensile test showed that tensile modulus increased and elongation at break of the rubber decreased with an increase in the degree of cross linking. The chemically crosslinked semi-crystalline EPDM exhibited excellent shape memory behavior, i.e. the sample was easily deformed to have an arbitrary secondary shape above its melting temperature and was fixed well in its deformed state when it is cooled, and then the fixed shape was recovered to its original shape very fast upon heating above its melting temperature.

Tide-induced changes in marine fish cage-shape cause changes in swimming behavior of cultured chub mackerel (Scomber japonicus)

  • Hwang, Bo-Kyu;Lee, Jihoon;Shin, Hyeon-Ok
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.4
    • /
    • pp.14.1-14.14
    • /
    • 2020
  • We performed field measurements of the behavioral changes in cultured chub mackerel (Scomber japonicus) caused by tide-induced changes in the shapes of their small-sized tetragonal fish cages. The field measurements were conducted in two separate periods: neap tide, a period in which the shape of the fish cages was stable; and spring tide, a period in which the fish cages are significantly deformed, which was expected to have significant influences on fish behavior. In the spring tide, the cages were deformed greatly by the moving water, with different water velocities affecting the cages to different degrees; the volume loss was estimated at 4.9% and 7.3% for v = 0.114 m/s and v = 0.221 m/s, respectively. The fish exhibited significantly different behaviors between the neap tide and spring tide. During the neap tide, the fish remained in the lower part of the cage, but during the spring tide they made frequent upward and downward movements, and their horizontal distribution changed significantly due to the changes in the shape of the cage. The cage deformation during the spring tide greatly influenced the swimming behavior of fish.

Performance Estimation of a Tidal Turbine with Blade Deformation Using Fluid-Structure Interaction Method

  • Jo, Chul-Hee;Hwang, Su-Jin;Kim, Do-Youb;Lee, Kang-Hee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • The turbine is one of the most important components in the tidal current power device which can convert current flow to rotational energy. Generally, a tidal turbine has two or three blades that are subjected to hydrodynamic loads. The blades are continuously deformed by various incoming flow velocities. Depending on the velocities, blade size, and material, the deformation rates would be different that could affect the power production rate as well as turbine performance. Surely deformed blades would decrease the performance of the turbine. However, most studies of turbine performance have been carried out without considerations on the blade deformation. The power estimation and analysis should consider the deformed blade shape for accurate output power. This paper describes a fluid-structure interaction (FSI) analysis conducted using computational fluid dynamics (CFD) and the finite element method (FEM) to estimate practical turbine performance. The loss of turbine efficiency was calculated for a deformed blade that decreased by 2.2% with maximum deformation of 216mm at the blade tip. As a result of the study, principal causes of power loss induced by blade deformation were analysed and summarised in this paper.

Correlation of Developmental Deformity with Calcium, Phosphorus, or Estradiol-17β Levels in Reared Red Spotted Grouper, Epinephelus akaara Juveniles

  • Kim, Ji Eun;Kim, Hyung Bae;Lee, Young Don;Baek, Hea Ja
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.391-397
    • /
    • 2017
  • Skeletal deformities are significant problems that affect the growth and commercial value of fish reared in hatcheries. However, studies of bone metabolic process related to skeletal deformities are limited. We investigated the potential correlation between bone deformities and plasma calcium, phosphorus, and estradiol-$17{\beta}$ levels in reared red spotted grouper (Epinephelus akaara) juveniles. We collected E. akaara frys from private farms at 110, 140, 180 and 300 days after hatching (DAH), and classified the normal and deformed fish by observing their external shape and inner frame by soft X-ray. We also analyzed the calcium, phosphorous, and estradiol-$17{\beta}$ levels in their plasma. A comparison between normal and deformed fish, indicated that calcium and estradiol-$17{\beta}$ levels were higher in deformed fish than in the normal at 180 and 300 DAH. The level of phosphorus was also higher in deformed individuals than in normal fish, but only at 300 DAH. These results suggest that skeletal deformities are associated with increases in plasma calcium, phosphorus, and estradiol-$17{\beta}$ levels.

Blank Design in Sheet Metal forming Process Using the Rollback Method (롤백방법을 이용한 박판금속성형공정에서의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.454-464
    • /
    • 1999
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between the deformed blank contour and the target contour shape into account. the minimization object function R is proposed. Based on the method, a computer program composed of blank design module, FE-analysis module and mesh generation module is developed. The rollback method is applied to square cup, reentrant cross section, L-shaped cup drawing process with the flange of uniform size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary blank shape after several modifications. Good agreements are recognized between the numerical results and the published experimental results for initial blank shape and thickness strain distribution. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Shape Optimization for Multi-Connected Structures (다연결체 구조물에 대한 형상 최적화)

  • 한석영;배현우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.151-158
    • /
    • 2000
  • The growth-strain method was used for shape optimization of multi-connected structures. It was verified that the growth-strain method is very effective for shape optimization of structures with only one free surface to be deformed. But it could not provide reasonable optimized shape for multi-connected structures, when the growth-strain method is applied as it is. The purpose of this study is to improve the growth-strain method for shape optimization of multi-connected two- and three- dimensional structures. In order to improve, the problems that occurred as the growth-strain method was applied to multi-connected structures were examined, and then the improved method was suggested. The effectiveness and practicality of the developed shape optimization system was verified by numerical examples.

  • PDF