• Title/Summary/Keyword: Deformed Shape

검색결과 442건 처리시간 0.025초

여자 중학생의 발의 형태분류에 따른 유형별 특성 분석 (Analysis of Foot Characteristics According to the Classification of Foot Types of Junior High School Girls)

  • 임지영
    • 한국의류산업학회지
    • /
    • 제9권3호
    • /
    • pp.319-326
    • /
    • 2007
  • The health of feet is connected with individual's health and affects a man's activity. Shoes need to be designed to protect feet and to absorb the impact of land. In order to choose suitable shoes for feet, the foot size and shape must be considered, so it is essential to grasp the exact size and shape of the foot. This study aims to present fundamental data on shoes' easy order prototype development for choosing shoes of good wearing comfort, by classifying feet size and shape junior high school boys in the early adolescent period. The subject were 217 Korean junior high school girls in age from 14 to 16 years old. The subjects were directly measured anthropometrically and indirectly analyzed photographically. 7 factors were extracted through factor analysis and those factors comprised 78.59% of total variance. The factors were characterized foot length, foot girth and width, foot shape around the fifth toes, foot shape around the first toes, angle of foot breadth, foot height, and foot length of upper foot. 3 clusters as their foot shape were categorized using 7 factor scores by cluster analysis. Type 1 had smaller in foot girth, width and length than other types and with deformed fifth toe. Type 2 had average size and high foot shape. Type 3 was characterized by long large foot with deformed first toe. The results would be a great support in producing and choosing appropriate shoes if forms are classified by subdividing foot form classification and extract a factor which shows only the foot sole shape.

유체$\cdot$구조물 상호 작용 기법을 이용한 오일 펜스의 변형 예측 (Prediction of Deformation of an Oil-fence by using Fluid$\cdot$Structure Interaction Method)

  • 김태균;김욱;허남건
    • 한국전산유체공학회지
    • /
    • 제5권3호
    • /
    • pp.16-22
    • /
    • 2000
  • In the present study a method of computing fluid-structure interaction is presented to simulate the deformation shape of an oil fence which is used to contain or to divert the split oil in sea water. The computation is performed by taking into account of the force and moment balance in each computational element of the oil fence. The forces and moments acting on each element of the structure is computed from the flow analysis, which in turn is used to predict deformed shape of the structure until the procedure converges. The flexibility of the oil fence was also considered in the analysis. It is shown from the present study that the predicted deformed shapes agree quite well with the available experiment data.

  • PDF

레이저 용접 차체의 유한 요소 모델링과 성형해석 (A Finite Element Modeling and Analyses of Laser Tailor-Welded Automotive Body)

  • 김헌영;최광용;김관회;조원석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.31-36
    • /
    • 1997
  • Various methods of finite element modeling for welded part are examined and the stamping simulation of automotive body is presented by using the explicit finite element code PAM-STAMPTM. The process of stamping simulation is suggested step by step, and then the gravity, binder wrap, forming, trimming and springback of front door inner are analyzed. It shows good agreements with real product in the aspects of deformed shape and failure area. The door inner with laser-tailor welded blank is simulated, in which deformed shape, movement of welde line and formability are predicted.

  • PDF

해석적 지식 추론을 통한 후방 압출푸의 예비 성형체 설계 (Preform Design of Backward Extrusion Based on Inference of Analytical Knowledge)

  • 김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.84-87
    • /
    • 1999
  • This paper presents a preform design method that combines the analytic method and inference of known knowledge with neural network. The analytic method is a finite element method that is used to simulate backward extrusion with pre-defined process parameters. The multi-layer network and back-propagation algorithm are utilized to learn the training examples from the simulation results. The design procedures are utilized to learn the training examples from the simulation results. The design procedures are two methods the first the neural network infer the deformed shape from the pre-defined processes parameters. The other the network infer the processes parameters from deformed shape. Especially the latest method is very useful to design the preform From the desired feature it is possible to determine the processes parameters such as friction stroke and tooling geometry. The proposed method is useful for shop floor to decide the processes parameters and preform shapes for producing sound product.

  • PDF

FSI analysis on the sail performance of a yacht with rig deformation

  • Bak, Sera;Yoo, Jaehoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.648-661
    • /
    • 2019
  • Thin fabric-based yacht sails have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure and also affected by the deformation of the mast. These deformations can change the airflow characteristics over the sail. Therefore, Fluid-Structure Interaction (FSI) analysis is needed to evaluate the sail force precisely. In this study, airflow over the deformed sail and rig was studied using FSI. Elastic deformation of the sail and rig was obtained by an aerodynamic calculation under dynamic pressure loading on the sail surface. The effects of rig deformation on the aerodynamic performance of the sail were examined according to the rig type and mast flexibilities. As a result, the changes of lift force for a fractional type rig with a thin mast section were more significant than with a masthead rig.

등가하중법을 이용한 강구조물 용접변형 해석 (Analysis of Welding Deformation by Equivalent Load Method on Steel Structures)

  • 박정웅;이재원;이해우
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.129-137
    • /
    • 2002
  • This study presents a new method to derive the constraint coefficient from the degree of angular deformation caused by welding, as measured experimentally by varying the shape of welded joints and the magnitude of constraints and from analysis results given by the elastic FEM method. The equivalent load was then calculated with this constraint coefficient. The validity of the numerical analysis involved in this new method was confirmed by its agreement with the experimental results. As for the effects of the constraints based on the shape of the welded joints in the case of Butt welding when the constraint coefficients are not considered, the deformed quantity produced by analysis is larger that produced by experiment and consequently is largely affected by the constraints. However, in the case of Fillet welding, the deformed quantity is seldom affected regardless of constraint coefficient considerations.

용접변형 예측 및 가시화 프로그램 개발 (Development of a Program for Prediction and Visualization of Welding Deformations)

  • 서승일;노재규;이정수
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.113-119
    • /
    • 2002
  • To prevent problems caused by welding deformation, preparation in the design stage is necessary. Countermeasures in the design stage is also the most cost-effective method. In this study, to give designers information on the welding deformation, a system to visualize the welding deformation is developed. The model to visualize the deformation is the stiffened plate common in steel structures. To increase computational efficiency, theoretical solutions to calculate the deformation of plate and stiffener are used instead of numerical analysis. Also, to secure accuracy, experiments to estimate bending moment causing welding deformations are performed. A computer program written with Visual C++ is developed for interactive data input, calculation of welding deformation and display of deformed shape. Designers can change the design in the early stage after checking the deformed shape by this system.

12 인치 열-냉 척의 표면 열 변형 해석

  • 이상순;윤지영;김맹권
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2003년도 추계학술대회 발표 논문집
    • /
    • pp.207-211
    • /
    • 2003
  • In this study, the geometric modeling has been conducted for a new model of 12 inch hot-cold chuck using three-dimensional solid modeler, SolidWorks. Then, the heat transfer analysis and the thermal deformation analysis using FEM have been performed. The results of the analysis show the temperature distribution and the deformed shape of a new model of 12 inch hot-cold chuck. The evaluation for the surface flatness of a new model has been performed based on the deformed shape obtained from ANSYS.

  • PDF

굽힘 에너지가 보강된 박막 요소와 연속 접촉 처리를 이용한 스탬핑 공정의 단면 해석 (Sectional Analysis of Sheet Metal Stamping Processes Using Bending Energy Augmented Membrane Element and Continuous Contact Treatment)

  • 윤정환;김종봉;양동열;유동진;한수식
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.58-67
    • /
    • 1998
  • A sectional analysis of sheet metal forming process with an arbitrary tool shape is proposed in the present work. To improve the numerical convergence in the conventional membrane sectional analysis, the Bending Energy Augmented Membrane (BEAM) elements had been developed. The BEAM elements particularly improve the stability and convergence of the finite element method for the case of deep drawing. In this work, the FERGUBON spline (C$^2$-continuous) was used to fit the deformed mesh to smooth the given curves and calculate the local curvature of the deformed sheet. The fittings of the deformed sheet and tool surface profile ensure the stability and the convergence of the finite element analysis of highly nonlinear stamping processes. A center floor section and front fender section are analyzed to show the accuracy and robustness of the approach. The results obtained by the proposed approach are compared with the available experimental data.

  • PDF

쉘 구조물의 용접 변형량 예측을 위한 요소망 생성 방법 (A Mesh Generation Method to Estimate Welding Deformation for Shell Structures)

  • 권기연
    • 한국CDE학회논문집
    • /
    • 제21권2호
    • /
    • pp.143-150
    • /
    • 2016
  • In shipbuilding, hull assemblies are manufactured by welding. The thermal deformation caused by the welding produces shape deformation. Counter-deformed design methods have been used in shipyards to cope with the weld-induced deformation of ship assembles. Finite element methods (FEMs) are frequently used to estimate welding distortion in the counter-deformed design. For the estimation of welding distortion, producing uniform rectangular elements is required to enter thermal loads on the welding line and obtain accurate analysis results. In this paper, a new automatic mesh generation method is proposed for prediction of welding deformation in FEM. Meshes are constructed for test cases to demonstrate the feasibility of the proposed mesh generation method.