• Title/Summary/Keyword: Deformed Geometry

Search Result 75, Processing Time 0.024 seconds

Structural Geometry, Kinematics and Microstructures of the Imjingang Belt in the Munsan Area, Korea (임진강대 문산지역의 구조기하, 키네마틱스 및 미세구조 연구)

  • Lee, Hyunseo;Jang, Yirang;Kwon, Sanghoon
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.271-283
    • /
    • 2021
  • The Imjingang Belt in the middle-western Korean Peninsula has tectonically been correlated with the Permo-Triassic Qinling-Dabie-Sulu collisional belt between the North and South China cratons in terms of collisional tectonics. Within the belt, crustal-scale extensional ductile shear zones that were interpreted to be formed during collapsing stage with thrusts and folds were reported as evidence of collisional events by previous studies. In this study, we tried to understand the nature of deformation along the southern boundary of the belt in the Munsan area based on the interpretations of recently conducted structural analyses. To figure out the realistic geometry of the study area, the down-plunge projection was carried out based on the geometric relationships between structural elements from the detailed field investigation. We also conducted kinematic interpretations based on the observed shear sense indicators from the outcrops and the oriented thin-sections made from the mylonite samples. The prominent structures of the Munsan area are the regional-scale ENE-WSW striking thrust and the N-S trending map-scale folds, both in its hanging wall and footwall areas. Shear sense indicators suggest both eastward and westward vergence, showing opposite directions on each limb of the map-scale folds in the Munsan area. In addition, observed deformed microstructures from the biotite gneiss and the metasyenite of the Munsan area suggest that their deformation conditions are corresponding to the typical mid-crustal plastic deformation of the quartzofeldspathic metamorphic rocks. These microstructural results combined with the macro-scale structural interpretations suggest that the shear zones preserved in the Munsan area is mostly related to the development of the N-S trending map-scale folds that might be formed by flexural folding rather than the previously reported E-W trending crustal-scale extensional ductile shear zone by Permo-Triassic collision. These detailed examinations of the structures preserved in the Imjingang Belt can further contribute to solving the tectonic enigma of the Korean collisional orogen.

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND DEFORMATION IN MANDIBLE ACCORDING TO THE POSITION OF PONTIC IN TWO IMPLANTS SUPPORTED THREE-UNIT FIXED PARTIAL DENTURE (두 개의 임플란트를 이용한 3본 고정성 국소의치에서 가공치 위치에 따른 하악골에서의 응력 분포 및 변형에 관한 삼차원 유한요소법적 연구)

  • Kim, Dong-Su;Kim, Il-Kyu;Jang, Keum-Soo;Park, Tae-Hwan;Kim, Kyu-Nam;Son, Choong-Yul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.2
    • /
    • pp.166-179
    • /
    • 2008
  • Excessive concentration of stress which is occurred in occlusion around the implant in case of the implant supported fixed partial denture has been known to be the main cause of the crestal bone destruction. Therefore, it is essential to evaluate the stress analysis on supporting tissue to get higher success rates of implant. The purpose of this study was to evaluate the effects of stress distribution and deformation in 3 different types of three-unit fixed partial denture sup-ported by two implants, using a three dimensional finite element analysis in a three dimensional model of a whole mandible. A mechanical model of an edentulous mandible was generated from 3D scan, assuming two implants were placed in the left premolars area. According to the position of pontic, the experiments groups were divided into three types. Type I had a pontic in the middle position between two implants, type II in the anterior posi-tion, and type III in the posterior position. A 100-N axial load was applied to sites such as the central fossa of anterior and posterior implant abutment, central fossa of pontic, the connector of pontic or the connector between two implants, the mandibular boundary conditions were modeled considering the real geometry of its four-masticatory muscular supporting system. The results obtained from this study were as follows; 1. The mandible deformed in a way that the condyles converged medially in all types under muscular actions. In comparison with types, the deformations in the type II and type III were greater by 2-2.5 times than in the type I regardless of the loading location. 2. The values of von Mises stresses in cortical and cancellous bone were relatively stable in all types, but slightly increased as the loading position was changed more posteriorly. 3. In comparison with type I, the values of von Mises stress in the implant increased by 73% in Type II and by 77% in Type III when the load was applied anterior and posterior respectively, but when the load was applied to the middle, the values were similar in all types. 4. When the load was applied to the centric fossa of pontic, the values of von Mises stress were nearly $30{\sim}35%$ higher in the type III than type I or II in the cortical and cancellous bone. Also, in the implant, the values of von Mises stress of the type II or III were $160{\sim}170%$ higher than in the type I. 5. When the load was applied to the centric fossa of implant abutment, the values of von Mises stress in the cortical and cancellous bone were relatively $20{\sim}25%$ higher in the type III than in the other types, but in the implant they were 40-45% higher in the type I or II than in the type III. According to the results of this study, musculature modeling is important to the finite element analysis for stress distribution and deformation as the muscular action causes stress concentration. And the type I model is the most stable from a view of biomechanics. Type II is also a clinically accept-able design when the implant is stiff sufficiently and mandibular deformation is considered. Considering the high values of von Mises stress in the cortical bone, type III is not thought as an useful design.

A Study on the Characteristics of Museum Projects by Richard Meier (리챠드 마이어의 미술관 특성에 관한 연구)

  • 김용립
    • Archives of design research
    • /
    • v.12 no.4
    • /
    • pp.231-241
    • /
    • 1999
  • This study propose to analyze the design method and the form elements of museums, of works by Richard Meier, and through the analysis, spacial characteristics of museums will be understood. The museum works of Richard Meier, as an exhibition space, not only display the art works efficiently, but they also offer visitors the opportunity to experience the art of architecture, as a cultural space. Richard Meier, when working on the projects, has utilized the design methods and the architectural language, learned from Mies van der Rohe and Le Corbusier, resourcefully. Having the structural grid as basis, the rational rectangular forms were intended for exhibition space, while the circular and partial circular forms of geometry were utilized in formative space. This was able to maintain the balance between functional and formative space. In the museums of his works, the ramp and the glass wall separated from the structure become very important means of expression. The ramps, not only make people to enjoy the interior and exterior of museum, but also able them to see the works of art from different distances and angles repeatedly and the large glass wall reveals the various shapes of interior to exterior. In comparing with the design method and language of two masters mentioned, the design principles and elements, developed by Meier were applied to the site plans, exhibition space planning and elevations to manifest its originality. The design concept, derived from the urban fabric and historical buildings around, gave harmony to the museum with its surroundings, and employing the deformed axis brought variation and the effect of diversion to the site plan. The exhibition space is much vitalized by the well arrangement of various exhibition fixtures in the museum. The exhibion fixtures, which the partitions, shelves, miches, and stages were put together in flexibility, play multiple roles as partitions dividing spaces, as furniture displaying art works, and as elements creating forms. The systematically arranged fixtures, also produce several visual axes and centers, which have visitors appreciate the works of art in various perspectives, hence create a unique environment.

  • PDF

Characterization of Fault Kinematics based on Paleoseismic Data in the Malbang area in the Central Part of the Ulsan Fault Zone (고지진학적 자료를 이용한 울산단층대 중부 말방지역에서의 단층운동 특성 해석)

  • Park, Kiwoong;Prasanajit, Naik Sambit;Gwon, Ohsang;Shin, Hyeon-Cho;Kim, Young-Seog
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.151-164
    • /
    • 2022
  • According to the records of historical and instrumental earthquakes, the southeastern part of the Korean Peninsula is considered the highest seismic activity area. Owing to recent reports of numerous Quaternary faults along the Yangsan and Ulsan fault zones, paleoseismological studies are being actively conducted in these areas. The study area is located in the central part of the Ulsan fault zone, where the largest number of active faults have been reported. Based on lineament and geomorphic analysis using LiDAR images and aerial photographs, fault-related landforms showing topographic relief were observed and a trench survey was conducted. The trench length 20 m, width 5 m, depth 5 m is located approximately 300 m away to the northeast from the previously reported Malbang fault. From the trench section, we interpreted the geometric and kinematic characteristics of the fault based on the deformed features of the Quaternary sedimentary layers. The attitude of the reverse fault, N26°W/33°NE, is similar to those of the reported faults distributed along the Ulsan fault zone. Although a single apparent displacement of approximately 40 cm has been observed, the true displacement could not be calculated due to the absence of the slickenline on the fault plane. Based on the geochronological results of the cryogenic structure proposed in a previous study, the most recent faulting event has been estimated as being earlier than the late Wurm glaciation. We interpreted the thrust fault system of the study area as an imbrication structure based on the previous studies and the fault geometry obtained in this additional trench. Although several previous investigations including many trench surveys have been conducted, they found limited success in obtaining the information on fault parameters, which could be due to complex characteristics of the reverse fault system. Additional paleoseismic studies will contribute to solving the mentioned problems and the comprehensive fault evolution.

Seismic Facies Classification of Igneous Bodies in the Gunsan Basin, Yellow Sea, Korea (탄성파 반사상에 따른 서해 군산분지 화성암 분류)

  • Yun-Hui Je;Ha-Young Sim;Hoon-Young Song;Sung-Ho Choi;Gi-Bom Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.136-146
    • /
    • 2024
  • This paper introduces the seismic facies classification and mapping of igneous bodies found in the sedimentary sequences of the Yellow Sea shelf area of Korea. In the research area, six extrusive and three intrusive types of igneous bodies were found in the Late Cretaceous, Eocene, Early Miocene, and Quaternary sedimentary sequences of the northeastern, southwestern and southeastern sags of the Gunsan Basin. Extrusive igneous bodies include the following six facies: (1) monogenetic volcano (E.mono) showing cone-shape external geometry with height less than 200 m, which may have originated from a single monogenetic eruption; (2) complex volcano (E.comp) marked by clustered monogenetic cones with height less than 500 m; (3) stratovolcano (E.strato) referring to internally stratified lofty volcanic edifices with height greater than 1 km and diameter more than 15 km; (4) fissure volcanics (E.fissure) marked by high-amplitude and discontinuous reflectors in association with normal faults that cut the acoustic basement; (5) maar-diatreme (E.maar) referring to gentle-sloped low-profile volcanic edifices with less than 2 km-wide vent-shape zones inside; and (6) hydrothermal vents (E.vent) marked by upright pipe-shape or funnel-shape structures disturbing sedimentary sequence with diameter less than 2 km. Intrusive igneous bodies include the following three facies: (1) dike and sill (I.dike/sill) showing variable horizontal, step-wise, or saucer-shaped intrusive geometries; (2) stock (I.stock) marked by pillar- or horn-shaped bodies with a kilometer-wide intrusion diameter; and (3) batholith and laccoliths (I.batho/lac) which refer to gigantic intrusive bodies that broadly deformed the overlying sedimentary sequence.