• 제목/요약/키워드: Deformed Die

검색결과 98건 처리시간 0.02초

Arbitrary Lagrange-Eulerian 기법을 활용한 액중 방전 성형의 해석적 연구 (Numerical Study of Electrohydraulic Forming Using an Arbitrary Lagrange-Eulerian Method)

  • 우민아;노학곤;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제25권1호
    • /
    • pp.49-55
    • /
    • 2016
  • Electrohydraulic forming (EHF) is a high-speed forming process that uses an electric arc discharge in water. Shock waves resulting from the electric arc discharge are propagated to the blank through water and the blank moves toward the die. Advantages of EHF include improved formability due to the high-speed process and reduction of the bouncing effect. In the current study, a numerical simulation of EHF was developed using LS-DYNA. In the simulation, the model for the electric arc was assumed as an adiabatic gas expansion and an Arbitrary Lagrange-Eulerian (ALE) multi material formulation was used to describe the interaction between the electric arc and the water. In order to model the Fluid-Structure Interaction (FSI), a coupling mechanism was used. The blank of Al 1100-O was simulated using shell elements. The results of the simulation showed that the blank was deformed due to the pressure propagation of water and the bouncing effect did not affect the formability of blank.

2중 원형동관의 2축압축 변형특성에 관한 연구 (Biaxial Compressive Deformation Characteristics of Double Round Copper Pipes)

  • 유종근;원시태
    • 소성∙가공
    • /
    • 제23권1호
    • /
    • pp.35-40
    • /
    • 2014
  • The deformation characteristics of a double round copper pipe and a single round copper pipe under biaxial compression were studied using a horizontal compression die. The change in punch load and in deformation behavior was measured during the experiments using various compressive deformation rates in the range of 10mm/min. ~ 450mm/min. The maximum punch load for both the double round copper pipe and the single round copper pipe decreased with increasing compressive deformation rate. The maximum punch load for the single round copper pipe was twice that of the double round copper pipe. After a 4.0mm stroke, the deformed shape of the single round copper pipe remained rectangular. However the outer tube of double round copper pipe remained rectangular while the inner tube was clover shaped. The stress and strain distributions in the double round copper pipe and the single round copper pipe show clear differences. The results of numerical simulations using Deform-2D are in good agreement with experimental results.

근적외선 집광가열 시 온도조건이 AZ31, Ti-GR2 소재 굽힘성형의 스프링백에 미치는 영향에 대한 실험적 연구 (The Effect of Temperature on Springback of AZ31, Ti-GR2 during V-bending with Focused Heating using Near-infrared Radiation)

  • 이은호;황준선;이창환;양동열
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.469-474
    • /
    • 2014
  • With the increased concerns of environmental issues, industries are paying more attention to lightweight metals. Because the high degree of springback is an obstacle to the widespread use of lightweight metals, many investigations have been conducted to reduce springback by increasing temperature. However, increasing the temperature of the whole die or the material is energy inefficient, since generally only a limited area of the material is deformed during sheet metal forming. As a solution to this problem, focused heating that only heats the area where plastic deformation occurs may be an alternative approach. In the current study, V-bending tests were conducted at various temperatures after the AZ31, Ti-GR2 sheets were locally heated using near-infrared (NIR) radiation in order to evaluate the effect of temperature on springback. The results of the experiment confirm that the NIR focused heating reduces the springback of AZ31, Ti-GR2 alloys with increasing temperature.

박판 페어 하이드로포밍 공정의 성형성 향상을 위한 다단 성형 공정의 개발 (Improvement of Formability in the Multi-Stage Sheet Pair Hydroforming Process)

  • 김태정;정창균;양동열;한수식
    • 소성∙가공
    • /
    • 제12권8호
    • /
    • pp.702-709
    • /
    • 2003
  • In the automotive industry hydroforming of sheet metal pairs have received special attention because materials for various sheet metal components of vehicles have changed into the high strength steel, aluminum, and titanium blank having low formability. Uniform deformation over the whole region is a main advantage in the sheet hydroforming process. Because upper and lower parts could be produced simultaneously with one tool, hydroforming of sheet metal pairs is competitive in reducing the lead-time and development cost. In this paper, the multi-stage hydroforming process of sheet pair is proposed in order to increase the formability of a structural part like the oil pan shape. The upper die for forming oil pan shape is divided into two parts which can move separately. By the finite element simulation, the design parameters such as geometry of the tool and detailed specification of hydraulic pump were calculated and verified. For the strict comparison of the proposed process, the blank holding force is kept to a constant value during deformation by hydraulic valve. The deformed shape and strain distribution of the manufactured parts with the proposed process are compared with the results of simulation. In the multi-stage hydroforming process, maximum thickness strain was improved by more than 30 percent.

인발가공에 있어서 마찰계수의 결정에 관한 연구 (A Study on the Estimation of Friction Coefficient in Drawing Process)

  • 김영수;안병하
    • 수산해양기술연구
    • /
    • 제20권2호
    • /
    • pp.122-126
    • /
    • 1984
  • 1. 미소한 단면적 변화율의 관재인발에서는 직접적인 방법에 의한 평균마찰계수(Mean friction coefficient)와 Sachs의 이론치가 매우 근사한 오차를 나타내므로 축방향 응력으로부터 마찰계수를 결정할 수 있다. 2. 비교적 높은 단면적 감소율의 인발에 있어서는 직접적인 방법에 의한 평균마찰계수가 Sachs등의 값 보다 더욱 실험치에 더욱 접근하므로 반경방향분력의 측정이 필요하다. 3. 봉재인발가공에 사용되는 평균마찰계수의 추정치도 관재인발의 경우에 확대 적용이 가능하다.

  • PDF

고온상태에서 마그네슘 합금의 디프드로잉 성형성에 관한 연구 (A Study on the Formability of Magnesium Alloy in Warm Temperature)

  • 강대민;황종관
    • 한국기계가공학회지
    • /
    • 제2권2호
    • /
    • pp.84-90
    • /
    • 2003
  • Magnesium alloys have been paid attention In automotive and industries as lightweight materials, and with these materials it has been attempted at deep drawing process for assessment of formability of sheet metal. For warm deep drawing process with a local heating and cooling technique, both die and blank holder were heated at warm temperature while the punch was kept at room temperature by cooling water. Warm deep-drawing process with considering heat transfer was simulated by finite element method to investigate the improvement of deep-drawability and temperature distribution of Mg alloy sheet. The effect of sham rate sensitivity index on the deformation profile was considered in this work and the simulation results revealed that considering heat transfer is very effective for deep-drawability of Mg alloy. The deformed blank In considering heat transfer was drawn successfully without any localized thinning and the cup height is higher in contrast to results of simulations in considering no heat transfer.

  • PDF

선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용 (Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming)

  • 이장현;윤종성;류철호;이황범
    • 한국CDE학회논문집
    • /
    • 제14권2호
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

CCSS 변형된 AA 3004 판재의 집합조직과 미세조직 (Texture and Microstructure in AA3004 after Continuous Confined Strip Shearing)

  • 김훈동;정영훈;황병복;최호준;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.181-183
    • /
    • 2002
  • A new deformation process termed "continuouis confined sup shearing" (CCSS) has been developed for shear deformation of metallic sheets. The tools of CCSS were designed to provide a constant shear deformation of the order of 0.5 per pass while preserving the original sheet shape. In order to clarify the evolution of texture and microstructure during CCSS, strips of the aluminum alloy AA3004 were deformed by CCSS in up to three passes. FEM results indicated that CCSS provides a quite uniform shear deformation at thickness layers close to the strip center, although the deformation is not homogeneous in the die channel, in particular at the surface layers. The rolling texture of the initial sheet decreased during CCSS, and preferred orientations along two fibers developed. However, with an increasing number of CCSS passes the deformation texture did not develop futher. The evolution of annealing textures depended on the number of CCSS passes. A strong {112}<110> component in the deformation texture led to the formation of a strong {111}<112) orientation in the annealing texture. Observations by TEM and EBSD revealed the formation of very fine grains of ∼1.0$\mu\textrm{m}$ after CCSS.

  • PDF

박판페어의 기계적 접합장치의 결합강도 개선에 관한 연구 (Improvement of Joining Strength of Mechanical Joining Process of a Sheet Metal Pair)

  • 윤희주;김태정;양동열;권순용;신철수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2002
  • The mechanical joining process of a sheet metal pair has been developed in order to replace the resistance spot welding process in case that joining of mechanically unweldable materials and coated sheet metals with different thickness are needed. Form-joining or clinching, a kind of mechanical joining process, is defined as joining process of a sheet metal pair by geometric constraint imposed by plastic deformation of workpieces without any additive part. It has been reported that the joining strength by commercial form-joining apparatus is 50∼70 percent of that by resistance spot welding. Therefore, a two-step form-joining process with a secondary punch is proposed. The device is designed to improve the joining strength by increasing the geometric constraint of the deformed shape by combining a primary punch, a secondary punch and a female die. In order to verify the improved joining strength by the designed process, the tensile-shear strength, the peel-tension strength and the asymmetric peel-tension strength are compared with those by the TOX process and resistance spot welding.

  • PDF

다이캐스팅 공정의 대체를 위한 마그네슘판재의 온간, 열간 ???K드로잉 성형성 평가 (The Drawbility Estimation in Warm and Rot Sheet Forming Process of Magnesium for Substitution of Die-casting Process)

  • 추동군;오세웅;이준희;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.407-410
    • /
    • 2005
  • The drawability of AZ31B magnesium sheet is estimated according to the variable temperatures (200, 250, 300, 350 and $400^{\circ}C$), forming speed (20, 50, 100 mm/min), thickness (0.8, 1.4 t), blank holding force (1.0, 1.4, 1.7kN). The deep drawing process (DDP) of circular cup is used in forming experiments. The results of deep drawing experiences show that the drawability is well at the range from 250 to $300^{\circ}C$, 50mm/min forming speed and 1.4kN blank holding force. The 0.8t magnesium sheets were deformed better than 1.4t. BHF was controlled in order to improve drawability and protect the change of cup thickness. When BHF was controlled, tearing and thickness change were decreased and LDR. was improved from 2.1 to 3.0.

  • PDF