• Title/Summary/Keyword: Deformed Cases

Search Result 86, Processing Time 0.03 seconds

Isolation of akabane virus and its molecular diagnosis by reverse transcription polymerase chain reaction (아까바네 바이러스의 분리 및 RT-PCR 진단법에 관한 연구)

  • Cho, Jae-jin;Lee, Chung-gil;Park, Bong-kyun;Chang, Chung-ho;Chung, Chung-won;Cho, In-soo;An, Soo-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.1
    • /
    • pp.42-48
    • /
    • 2000
  • Akabane disease is transmitted through mosquitoes in cattle, sheep and goats. It shows congenital abnormalities including encephalomyetitis, hydranencephaly, neurogenic arthrogryposis, and deformed neonatal calves. Akabane viruses, 93FMX and K-9 strain, were isolated from fetal matrix of aborted cow and blood of healthy cow, respectively. S gene sequences of 93FMX and K-9 showed 100% homology with that of OBE-1 strain isolated in Japan. Based upon our sequencing data, we synthesized specific primers for PCR diagnosis. Using these primers, we were able to amplify the S gene of Akabane virus not only from the culture fluid of Vero cells but also from the brain tissue of suckling mouse inoculated with, Akabane virus. These PCR products were confirmed by Southern blot hybridization. Not only the sensitivity of PCR test was high enough to detect the viruses of $10^{1.0}TCID_{50}/ml$, but also the time for diagnosis was significantly shorter than that of the virus isolation by tissue culture method. This method was also effective for the detection of Akabane virus in the cerebrum of fetus. RT-PCR method may be used for a useful diagnostic test of the clinical cases of Akabane disease.

  • PDF

A Study on the Size of TMD Patient's Condyle Head (악관절장애환자의 하악과두 크기에 관한 연구)

  • Lee, Doo-Hee;Oh, Soon-Ho;Suh, Chang-Ho;Kim, Joon-Bae
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.5
    • /
    • pp.417-422
    • /
    • 2001
  • Objective: In many TMD cases, deformed and reduced condyle heads were frequently observed. This study was prepared to compare the dimensions between normal and symptomatic condyles, using MR images. Materials: One hundred and twenty one patients with clinical signs and MRI-confirmed diagnosis of disc displacement were selected for this study. Thirty eight TMJs from nineteen asymptomatic volunteers who had no clinical symptoms and no disc displacement on sagittal and coronal view of MRI, were served as normal. Methods: Symptomatic condyles were classified according to the severity of the anterior disc displacement. The amount of anterior disc displacement was evaluated at sagittal section, and they were classified into 4 groups as normal(N), little(G0), mild(G1), moderate(G2) and severe displacement(G3). The dimentions of condyle were measured at the 200% magnified view, by digitizing program. All dimensions were compared among each groups on the central section of sagittal and coronal views, and the statistical analysis was performed. Results: The mean value of anteroposterior length of normal condyle was $0.79{\pm}0.13cm$ at sagittal section and mediolateral length was $2.12{\pm}0.22cm$ on coronal section. The mean value of anteroposterior length of symptomatic condyle was $0.67{\pm}0.16cm$ at sagittal section and mediolateral length was $1.97{\pm}0.28cm$ on coronal section. Conclusions: The size of symptomatic condyle was smaller than normal TMJ. The size of condyle was decreased as the amount of the disc displacement was increased. The dimensional change was found on the anterior articular surface of condyle at the mild or moderate disc displacement. And at the case of severe disc displacement, dimensional change was found on the superior articular surface.

  • PDF

Estimation Method of the Design Wind Load of Soundproof Wall Using GIS (GIS를 이용한 방음벽의 설계풍하중 산정방법)

  • Lee, Dong-Ho;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.75-85
    • /
    • 2015
  • Recently deformed or destroyed of soundproof wall by local winds and typhoon has increased. This research proposed the estimation method of the design wind load of soundproof wall using spatial information analysis based on 1:5,000 digital map and performed comparative analysis with actual application cases. According to the result of quantitative evaluation using GIS, the surface roughness in the downtown area packed with buildings was III and the surface roughness in the suburban district with a relatively small number of buildings was II and the surface roughness in the district packed with open areas and typical farmhouses was I. This shows that the wind load of the soundproof walls reflecting the actual surface conditions was estimated. If the quantitative GIS analysis presented in this study is applied to wind-resistant design of soundproof walls, it is supposed that this will be helpful in more rational wind-resistant design by remedying the existing problem in which the wind load varies depending on designer's subjectivity.

Medial Canthopexy using Modified Hiraga's Incision for Correction of Traumatic Telecanthus (외상성 내안각격리증 환자에 있어 Hiraga 절개법을 이용한 내안각 고정술)

  • Lim, Jong-Hyo;Kim, Yong-Ha;Kim, Tae-Gon;Lee, Jun-Ho
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.504-508
    • /
    • 2010
  • Purpose: Traumatic telecanthus can result from nasoethmoid-orbital fractures. Repair of the medial canthal tendon (MCT) using transnasal wiring is regarded as a choice of method to treat telecanthus, however, is often complicated by incomplete anchoring and drift of canthus, extrusion of wire, in-fracture of orbital bone, and eye damage. The authors introduced oblique transnasal wiring method through the Hiraga's epicanthopalsty incision instead of well-known classical bicoronal approach. Methods: Five patients with traumatic telecanthus were treated with this method. Though the Hiraga's epicanthoplasty incision, we could approach the operative field; the medial orbital wall and detached MCT. Oblique transnasal wiring was performed as following steps. After slit skin incision on the contralateral nasal recession area, drill holes were made from this point to the superior and posterior point of lacrimal sac of deformed eye. A 2-0 wire was double-passed through the holes and MCT. Traction was applied to ensure pulling the MCT and the wires were twisted in the contralateral nose, securing the MCT in the correct position. Results: All patients except 1 person showed improvement and rapid recovery. On average each canthus was moved 5.6 mm medially. In all cases, there were no eyelashes disappear, lacrimal canaliculitis, lacrimal duct injury, or infections. Conclusion: The Hiraga's epicanthoplasty incision could give sufficient operative field to reattach the MCT in traumatic telecanthus patients. And the oblique transnasal wiring technique is effective for the Asians who have flat nose and exophthalmic eye. The authors conclude that this technique could be a simple, safe and scarless method to correct traumatic telecanthus.

A Study on the Hole Stability in the U-Grooved Plates (U-groove가 있는 평판재 끝 Hole의 안정성 문제)

  • Kim, Si-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 1983
  • In the stability problem of the U-grooved plate, it has a circular hole, the site of the hole determines some different deformation mode when it was loaded. To determine the optimal position of the circular hole-center which not to get large distortion of the hole itself, in this paper, we studied the distributions of stresses in the neck area between hole and U-groove and the distortion mode of the deformed hole by B.E.M(Boundary Element Method) and compared with experimental results in four cases. For a distributed load, according to the center of the hole moves closer to the U-groove center (c.-c. line), the shape of the circular hole was transformed to the elliptical one(it's major axis perpendicular to the c.-c. line). In this problem, the results by Boundary Element Method was well accorded with Experiments.

  • PDF

In-situ Determination of Structural Changes in Polyethylene upon Creep and Cyclic Fatigue Loading (크리프와 반복 피로하중에 의한 폴리에틸렌의 실시간 구조 변화)

  • Jeon, Hye-Jin;Ryu, Seo-Kgn;Pyo, Soo-Ho;Choi, Sun-Woong;Song, Hyun-Hoon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.88-92
    • /
    • 2012
  • Long-term performance of polymer under constant sustained load has been the main research focus, which created a need for the accelerated test method providing proper lifetime assessment. Cycling fatigue loading is one of the accelerated test method and has been of great interest. Microstructure change of high density polyethylene under cyclic fatigue loading and creep was examined utilizing a tensile device specially designed for creep and fatigue test and also can be attachable to the X-ray diffractometer. In this way, the crystal morphology change of polyethylene under creep and cyclic fatigue load was successfully monitored and compared. Despite the marked differences in macroscopic deformation between the creep and cyclic fatigue tests, crystal morphology such as crystallinity, crystal size, and $d$-spacing was as nearly identical between the two test cases. Specimens pre-deformed to different strains, i.e., before yield point (BYP), at yield point (YP) and after yield point (AYP), however, showed markedly different changes in crystal morphology, especially between AYP and the other two specimens.

SECONDARY RHINOPLASTY IN MID-FACIAL TRAUMA PATIENTS (중앙안면골 골절 환자에서의 이차 비성형술)

  • Jeong, Jong-Cheol;Kim, Keon-Jung;Lee, Jeong-Sam;Min, Heung-Ki;Choi, Jae-Sun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.4
    • /
    • pp.607-614
    • /
    • 1996
  • Nasal bone fracture is common in mid-facial trauma patients. In these patients, facial bone and nasal bone fracture are reducted at same time, but definite nasal reduction is difficulty in these patients because of nasotracheal intubation during general anesthesia and facial swelling in early facial trauma patients. If nasal packing and MMF are needed, there are difficult to maintain the reducted nasal bone because of some difficulty in airway maintenance after nasal packing and increasing the patient discomfort. So postoperative nasal deformity is more common in these combined patients. Secondary rhinoplasty is necessary in these patients who have deformed nasal bone, and there are many methods and materials for secondary rhinoplasty. But if primary nasal bone was reducted symmetrically, it is easy in secondary rhinoplasty. We present 7 cases of secondary rhinoplasty in mid-facial trauma patients who had combined nasal bone fracture. In these patients, primary nasal bone reduction carried with closed reduction method during primary facial bone reduction. About 6 months later, we performed secondary rhinoplasty with iliac bone and alloplastic materials. So we report these cases with literatures.

  • PDF

A study on the field application of high strength steel pipe reinforcement grouting (고강도 강관 보강 그라우팅의 현장 적용성에 관한 연구)

  • Shin, Hyunkang;Jung, Hyuksang;Ryu, Yongsun;Kim, Donghoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.455-478
    • /
    • 2019
  • In this paper, we conducted experimental investigation on the field applicability through the verification of reinforcement effect of the steel pipe reinforcement grouting using high strength steel pipe. SGT275 (formerly known as STK400) steel pipe is generally applied to the traditional steel pipe reinforcement grouting method. However, the analysis of tunnel collapse cases applying the steel pipe reinforcement grouting shows that there are cases where the excessive bending and breakage of steel pipe occur. One of the reasons causing these collapses is the lack of steel pipe stiffness responding to the loosening load of tunnels caused by excavation. The strength of steel pipe has increased due to the recent development of high strength steel pipe (SGT550). However, since research on the reinforcement method considering strength increase is insufficient, there is a need for research on this. Therefore, in this study, we conducted experiments on the tensile and bending strength based on various conditions between high strength steel pipe, and carried out basic research on effective field application depending on the strength difference of steel pipe through the conventional design method. In particular, we verified the reinforcement effect of high strength steel pipe through the measurement results of deformed shape and stress of steel pipe arising from excavation after constructing high strength steel pipe and general steel pipe at actual sites. The research results show that high strength steel pipe has excellent bending strength and the reinforcement effect of reinforced grouting. Further, it is expected that high strength steel pipe will have an arching effect thanks to strength increase.

Evaluation of Reinforcement Effect of Rock Bolts in Anisotropic Rock Mass Using Tunnel Scaled Model Tests (터널 축소모형실험을 통한 이방성 암반내 록볼트의 보강효과 검토)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.442-456
    • /
    • 2018
  • Scaled model tests were performed to evaluate the reinforcement effect of rock bolts in anisotropic rock mass. For this purpose, two tunnel cases were experimented which had different tunnel sizes, rock strengths, anisotropic angles and coefficients of lateral pressure. The fully grouted rock bolts of the D25 deformed bar were modeled as the basting pins with bead and were systematically installed at the roof and the side wall of the model tunnel. As results of the first case experimentations, the unsupported model showed initial crack at the roof of tunnel, but the supported model with rock bolts showed initial crack at the floor of tunnel where rock bolts were not installed. The crack initiating pressure and the maximum pressure of the supported model with rock bolts were 11% and 7% larger than those of the unsupported model, respectively. Moreover, the effect of the existing discontinuities in anisotropic rock mass on the fracture behavior of tunnel was reduced in the supported model, and so the reinforcement effect of rock bolt turned out to be experimentally verified. As results of the second case experimentations considering different support patterns, the crack initiating pressures of models were larger and the reduction ratios of tunnel area according to applied load were smaller as the length and the quantity of rock bolts were larger. Therefore, it was found that the performance of the rock bolts turned out to be improved as they were larger.

Robust Design for Showerhead Thermal Deformation

  • Gong, Dae-Wi;Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.150.1-150.1
    • /
    • 2014
  • Showerhead is used as a main part in the semiconductor equipment. The face plate flatness should remain constant and the cleaning performance must be gained to keep the uniformity level of etching or deposition in chemical vapor deposition process. High operating temperature or long period of thermal loading could lead the showerhead to be deformed thermally. In some case, the thermal deformation appears very sensitive to showerhead performance. This paper describes the methods for robust design using computational fluid dynamics. To reveal the influence of the post distribution on flow pattern in the showerhead cavity, numerical simulation was performed for several post distributions. The flow structure appears similar to an impinging flow near a centered baffle in showerhead cavity. We took the structure as an index to estimate diffusion path. A robust design to reduce the thermal deformation of showerhead can be achieved using post number increase without ill effect on flow. To prevent the showerhead deformation by heat loading, its face plate thickness was determined additionally using numerical simulation. The face plate has thousands of impinging holes. The design key is to keep pressure drop distribution on the showerhead face plate with the holes. This study reads the methodology to apply to a showerhead hole design. A Hagen-Poiseuille equation gives the pressure drop in a fluid flowing through such hole. The assumptions of the equation are the fluid is viscous-incompressible and the flow is laminar fully developed in a through hole. An equation can be expressed with radius R and length L related to the volume flow rate Q from the Hagen-Poiseuille equation, $Q={\pi}R4{\Delta}p/8{\mu}L$, where ${\mu}$ is the viscosity and ${\Delta}p$ is the pressure drop. In present case, each hole has steps at both the inlet and the outlet, and the fluid appears compressible. So we simplify the equation as $Q=C(R,L){\Delta}p$. A series of performance curves for a through hole with geometric parameters were obtained using two-dimensional numerical simulation. We obtained a relation between the hole diameter and hole length from the test cases to determine hole diameter at fixed hole length. A numerical simulation has been performed as a tool for enhancing showerhead robust design from flow structure. Geometric parameters for the design were post distribution and face plate thickness. The reinforced showerhead has been installed and its effective deposition profile is being shown in factory.

  • PDF