• 제목/요약/키워드: Deformation zone

검색결과 541건 처리시간 0.029초

Characteristics and prediction methods for tunnel deformations induced by excavations

  • Zheng, Gang;Du, Yiming;Cheng, Xuesong;Diao, Yu;Deng, Xu;Wang, Fanjun
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.361-397
    • /
    • 2017
  • The unloading effect from excavations can cause the deformation of adjacent tunnels, which may seriously influence the operation and safety of those tunnels. However, systematic studies of the deformation characteristics of tunnels located along side excavations are limited, and simplified methods to predict the influence of excavations on tunnels are also rare. In this study, the simulation capability of a finite element method (FEM) considering the small-strain characteristics of soil was verified using a case study. Then, a large number of FEM simulations examining the influence of excavations on adjacent tunnels were conducted. Based on the simulation results, the deformation characteristics of tunnels at different positions and under four deformation modes of the retaining structure were analyzed. The results indicate that the deformation mode of the retaining structure has a significant influence on the deformation of certain tunnels. When the deformation magnitudes of the retaining structures are the same, the influence degree of the excavation on the tunnel increased in this order: from cantilever type to convex type to composite type to kick-in type. In practical projects, the deformation mode of the retaining structure should be optimized according to the tunnel position, and kick-in deformation should be avoided. Furthermore, two methods to predict the influence of excavations on adjacent tunnels are proposed. Design charts, in terms of normalized tunnel deformation contours, can be used to quantitatively estimate the tunnel deformation. The design table of the excavation influence zones can be applied to determine which influence zone the tunnel is located in.

실내 모형실험을 통한 시공 중 파쇄대의 공간적 분포가 터널거동에 미치는 영향 (Effect of orientation of fracture zone on tunnel behavior during construction using model test)

  • 조윤규;신승민;정은목;최정혁;유충식
    • 한국터널지하공간학회 논문집
    • /
    • 제17권3호
    • /
    • pp.189-204
    • /
    • 2015
  • 본 논문에서는 축소 모형실험을 이용한 파쇄대의 공간적 분포 특성이 터널의 거동에 미치는 영향에 대한 내용을 다루었다. 모형실험 조건으로 터널과 파쇄대의 이격 거리 및 지표면과 이루는 경사에 대해서 실험을 수행하였다. 터널 시공 과정을 압축공기기법으로 모사하였으며 실험 중에 터널의 내부 압력을 제거 하는 동시에 터널 및 지반에 발생하는 변형을 모니터링 하였다. 실험 결과 파쇄대 이격 거리에 따라서 터널 거동에 영향을 미치며 파쇄대가 수직일 경우 터널에 가장 큰 영향이 발생하며 파쇄대 경사 45도에서 가장 작은 영향이 발생하는 것으로 나타났다.

파쇄대가 터널 주변 암반의 변형 거동에 미치는 영향에 대한 수치해석적 연구 (Numerical Analysis on the Effect of Fractured Zone on the Displacement Behavior of Tunnel)

  • 김창용;김광염;문현구;이승도;백승한
    • 터널과지하공간
    • /
    • 제16권3호
    • /
    • pp.218-231
    • /
    • 2006
  • 이방성/비균질 암반은 터널 굴착에 의해 매우 다양한 변형거동을 나타내며, 이는 암반 내 존재하는 단층 및 절리 그리고 파쇄대 등과 같은 지질학적 요소들의 공간적인 특성에 의해 크게 좌우된다. 본 논문에서는 파쇄대가 존재할 경우 2차원 수치해석을 통해 여러 가지 영향인자들에 대한 매개변수 분석을 수행하였다. 그 결과 파쇄대 폭 및 위치 그리고 지보 등에 따라 터널 변위는 분석 위치마다 매우 상이하게 나타났다. 그러나 불연속면 및 파쇄대는 3차원적 기하구조를 나타내므로 3차원 지반 구조적 특성을 고려할 수 있는 3차원 해석이 필수적이라고 판단된다. 또한 기술적으로 안전하고 경제적인 터널 건설을 위하여 불확실한 지반조건 및 환경여건에 매우 유연하게 대처할 수 있는 설계/시공 기술이 필요하다고 판단된다.

단층 및 파쇄대가 분포하는 Fill Dam 기초의 보강대책 (Geotechnical treatment for the fault and shattered zones under core foundation of fill dam)

  • 김연중;최명달
    • 지질공학
    • /
    • 제2권1호
    • /
    • pp.19-35
    • /
    • 1992
  • 화강편마암을 지반으로 하는 지역의 Fill Dam 코어기초에 3-12m 폭의 단층대와 40여m 폭의 단층파쇄대가 신선한 암반사이에 분포하며, 이들 각각의 암반의 탄성특성은 현저한 차이를 보인다. 평판재하시험 및 시추공내 변형시험 등의 현장 원위치 시험결가 신선한 암반의 변형계수는 $42,000~168,000kg/\textrm{cm}^2$의 범위를 보이나 단층대의 변형계수는 $963~2,204kg/\textrm{cm}^2$, 파쇄대에서는 $1,238~2,098kg/\textrm{cm}^2$의 범위를 나타낸다. 이와 같이 큰 차이의 변형계수값을 갖는 단층대 및 단층파쇄대와 신선한 암반 사이에는 댐 성토 후 부등침하가 예상된다. 따라서 이에 대한 보강을 위하여 증분식 유한요소 프로그램인 FEADAM 84를 이용한 지반과 보강에 따른 변위 등을 검토하였다. 이때 구성된 유한요소망은 지표조사 및 시추조사에서 확인된 불연속면이 기하학적 분포특성을 고려하였다. 유한요소 해석을 통하여 계산된 단층대와 신선한 암반 사이의 보강 전 부등침하량은 약 6cm에 달하며, 콘크리트 치환 보강 후에는 0.5cm 이내로 나타났다.

  • PDF

횡방향으로 등방성인 재료에서 균열선단 크리프 변형 거동 (Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials)

  • 마영화;윤기봉
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1455-1463
    • /
    • 2009
  • Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-$2^{nd}$ creep, which elastic modulus ( E ), Poisson's ratio ( ${\nu}$ ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials.

軟鋼 熔接熱影響部의 塑性變形擧動에 關한 硏究 II (A Study the Behavior of Plastic Deformation in Weld HAZ of Mild Steel)

  • 박창언;정세희
    • Journal of Welding and Joining
    • /
    • 제10권1호
    • /
    • pp.43-51
    • /
    • 1992
  • The plastic zone formed around a notch tip is important in analyzing the fracture toughness of structures and particularly weld cracks existed in the weld HAZ (heat affected zone) which produces local plastic deformation at the crack tip. Therefore, in order to analyze the fracture toughness in weld HAZ, it is necessary to investigate the new fracture toughness parameter $K_{c}$ $^{*}$ and critical plastic strain energy $W_{p}$ $^{c}$ according to the shape and size of the plastic zone. 1) If the temperature corresponding to $K_{c}$ $^{*}$=130kg-m $m^{-3}$ 2/ is determined, transition temperature $T_{tr}$ the magnitude of plastic zone size, and heat input change depending on the fracture toughness. The blunted amounts of the parent and weld HAZ show mild linear variation until .delta.=0.4mm and then increase very steeply there after. 2) The relation between the plastic strain energy( $W^{p}$ ) and transition temperature( $T_{*}$tr) in parent metal is more sensitive than that of weld HAZ. However, the plastic strain energy depends on the transition temperature, and thus the yield stress, .sigma.$_{ys}$ becomes an important parameter for plastic strain energy. 3) The critical plastic strain energy( $W_{p}$ $^{c}$ ) absorbed by the plastic zone at the notch tip indicated in case of parent metal: 60J/mm, in case of heat input(20KJ/cm): 75J/mm, in case of heat input(30KJ/cm); 50J/mmJ/mm.

  • PDF

초소성변형거동의 온도의존성에 대한 이론 및 실험적 고찰 (Theoretical and Microstructural Study on the Temperature Dependence of Superplastic Deformation Behavior)

  • 방원규;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.228-231
    • /
    • 1997
  • A series of load relaxation tests was performed to determine stress-strain rate curves at high temperatures. Constitutive parameters of GBS and GMD were evaluated from the curves using the recently proposed inelastic deformation theory. Tensile tests and Microsturcture investigations showed deformation behavior as the relaxation test results predicted.

  • PDF

원형 커버의 펄스 레이저 용접 후 부품 잔류변형 개선에 관한 유한요소해석 (Finite Element Analysis on the Improvement of Residual Deformation of the Part After Pulse Laser Welding of Circular Cover)

  • 김관우;조해용
    • Journal of Welding and Joining
    • /
    • 제33권6호
    • /
    • pp.60-66
    • /
    • 2015
  • Molten zone shape of pulse laser welding is affected by welding conditions such as beam power, beam speed, irradiation time, pulse frequency, etc. and is divided into conduction type and keyhole type. It is necessary to design heat source model for irradiation of laser beam in the pulse laser welding. Shape variables and the maximum energy density value of the heat source model are different depending on the molten zone shape. In this paper, pulse laser welding simulation for joining of cylindrical part and circular cover was carried out. The heat source model for pulse laser beam with circular path was applied to the heat input boundary condition, radiative and conductive heat transfer were considered for the thermal boundary condition. For each phase, thermal and mechanical properties according to temperature were also applied to analysis. Analytical results were in good agreement with the molten zone size of specimen under the same welding conditions. So, the reliability of the welding simulation was verified. Finally, the improvements for reducing residual deformation after cover welding could be reviewed analytically.

모사된 미세중력장내 액체부유대에서의 Marangoni대류의 불안정성 (Marangoni Convection Instability of a Liquid Floating Zone in a Simulated Microgravity)

  • 이진호;이동진;전창덕
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.456-466
    • /
    • 1994
  • Experimental investigation was made to study the mechanism of fluid and thermal oscillation phenomena of surface-tension driven flow in a cylindrical liquid column heated from above which is the low-gravity floating zone simulated on earth. Hexadecane, octadecane, silicon oil (10cs), FC-40 and water are used as the test liquids. The onset of the oscillatory thermocapillary convection appears when Marangoni number exceeds its criteria value and is found to be due to the coupling among velocity and temperature field with the free surface deformation. The frequency of temperature oscillation decreases with increasing aspect ratio for a given diameter and Marangoni number and the oscillation level increases with Marangoni number. The flow pattern in the liquid column appears either as symmetric or asymmetric 3-D flow due to the oscillatory flow in the azimuthal direction. The free surface deformation also occurs either as symmetric or asymmetric mode and its frequency is consistent with those of flow and temperature oscillations. The amplitude of surface deformation also increases with Marangoni number.

A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques

  • Li, Chen;Wu, Zheng;Zhang, Wenlong;Sun, Yanhua;Zhu, Chun;Zhang, Xiaohu
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.449-460
    • /
    • 2020
  • The double-lane arrangement model is frequently used in underground coal mines because it is beneficial to improve the mining efficiency of the working face. When the double-lane arrangement is used, the service time of the reserved roadway increases by twice, which causes several difficulties for the maintenance of the roadway. Given the severe non-uniform deformation of the reserved roadway in the Buertai Coal Mine, the stress distribution law in the mining area, the failure characteristics of roadway and the control effect of support resistance (SR) were systematically studied through on-site monitoring, FLAC 3D numerical simulation, mechanical model analysis. The research shows that the deformation and failure of the reserved roadway mainly manifested as asymmetrical roof sag and floor heave in the region behind the working face, and the roof dripping phenomenon occurred in the severe roof sag area. After the coal is mined out, the stress adjustment around goaf will happen to some extent. For example, the magnitude, direction, and confining pressure ratio of the principal stress at different positions will change. Under the influence of high-stress rotation, the plastic zone of the weak surrounding rock is expanded asymmetrically, which finally leads to the asymmetric failure of roadway. The existing roadway support has a limited effect on the control of the stress field and plastic zone, i.e., the anchor cable reinforcement cannot fully control the roadway deformation under given conditions. Based on obtained results, using roadway grouting and advanced hydraulic support during the secondary mining of the panel 22205 is proposed to ensure roadway safety. This study provides a reference for the stability control of roadway with similar geological conditions.