• Title/Summary/Keyword: Deformation tube

Search Result 383, Processing Time 0.023 seconds

The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion (접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향)

  • Lee, Jung-Min;Kim, Byung-Min;Jung, Young-Deuk;Cho, Hoon;Cho, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

A Study on Design and Dynamic Characteristics of Tearing Tubes Applied in Tram (트램용 테어링 튜브 에너지흡수부재 설계와 동적 특성 연구)

  • Choi, Jiwon;Kwon, Taesoo;Jung, Hyunseung;Kim, Jinsung;Kwak, Jaeho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.524-536
    • /
    • 2015
  • The paper aims to design and verify tearing tube type energy absorption device applied in tram to ensure safety in case of collision accident. Energy capacity of tearing tube is determinated based on EN15227 and Standard Collision Scenarios Criterion in Detail in Republic of Korea. Tearing tube is designed based on theoretical model suggested by X.Huang et al. and assumption by T.Y. Reddy et al. Real scale collision tests are conducted to analyze the energy absorption characteristics and deformation mode. Bending of curl tips is absorbed collision energy when curl tips and tube body are contacted to each other from the tests and we suggest and include the formula on bending of curl tips in theoretical model.

An Experimental Study on the Evaluation of Fire-Resist Performance of High-Strength Concrete Filled steel Tube Column at Fire (화재가열을 받은 고강도 콘크리트를 충전한 CFT 기둥의 내화성능 평가에 관한 실험적 연구)

  • Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Han, Hee-Chul;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.193-197
    • /
    • 2008
  • Recently, it increases in use of CFT(Concrete filled steel tube, below CFT) that is an excellent internal force and deformation capacity because material and method are required to be diversification and High-Performance according to increase the super-high structure. And it is proposed to use high-strength Concrete Filled steel Tube Column. But it is difficult quantitative evaluation about fire-resist performance of CFT because steel tube bind concrete. Also, the case of high strength CFT is feared that spalling occur inside. Therefore, this study made CFT specimen that determine the factor(which is strength of concrete) and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, it tried to analyze internal temperature through nonlinear transient heat flow analysis.

  • PDF

Forming Limit Diagram of an Aluminum Tube from Hydroforming tests (액압성형 시험을 통한 알루미늄 튜브 재료의 성형한계도)

  • Kim J. S.;Lee J. K.;Park J. Y.;Lee D. J.;Kim H. Y.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.253-257
    • /
    • 2005
  • A tube hydroformability testing system was designed and fabricated so as to observe the forming process and to apply forming condition along arbitrarily pre-programmed internal pressure-axial feed path. The forming limit diagram of A6063 extruded tube, of 40.6 mm outer diameter and 2.25 mm thickness, was successfully obtained through free bulging and T-forming tests except the region of high positive minor strain. It is found that the data points marked on the FLD are mostly located near the strain paths from the finite element analysis excluding the cases of large axial feed. There exist data points even in the area beyond the uniaxial tension mode, since the reduction in thickness decreases due to the axial feed. The forming limit from T-forming test was considerably lower than that from free bulge test. It seems because the deformation is localized at the pole.

  • PDF

Ultimate compressive strength predictions of CFT considering the nonlinear Poisson effect

  • Yu-A Kim;Ju-young Hwang;Jin-Kook Kim
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.461-474
    • /
    • 2023
  • Concrete-filled steel tubes are among the most efficient compressive structural members because the strength of the concrete is enhanced given that the surrounding steel tube confines the concrete laterally and the steel tube is restrained with regard to inward deformation due to the concrete existing inside. Accurate estimations of the ultimate compressive strength of CFT are important for efficient designs of CFT members. In this study, an analytical procedure that directly formulates the interaction between the concrete and steel tube by considering the nonlinear Poisson effect and stress-strain curve of the concrete including the confinement effect is proposed. The failure stress of concrete and von-Mises failure yield criterion of steel were used to consider multi-dimensional stresses. To verify the prediction capabilities of the proposed analytical procedure, 99 circular CFT experimental data instances from other studies were used for a comparison with AISC, Eurocode 4, and other researchers' predictions. From the comparison, it was revealed that the proposed procedure more accurately predicted the ultimate compressive strength of a circular CFT regardless of the range of the design variables, in this case the concrete compressive strength, yield strength of the steel tube and diameter relative to the thickness ratio of the tube.

Study on Buckling Instability of Expansion Tube using Finite Element Method (유한요소법을 이용한 팽창튜브의 좌굴불안전성에 관한 연구)

  • Choi, Won-Mok;Kwon, Tae-Su;Jung, Hyun-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.147-151
    • /
    • 2010
  • Since the kinetic energy is dissipated through plastic deformation energy generated in expanding process of the tube by a die. In order to successfully absorb the kinetic energy there should be no buckling in the expansion tube during expanding process. The buckling instability of the expansion tubes is affected by the initial boundary conditions, tube thickness and length. In this study, the effects of the tube thickness except length and initial boundary condition on the buckling instability are studied using a finite element method. In addition, Analysis procedure for nonlinear post-buckling analysis of expansion tube is established. There are three kinds of finite element analysis procedures for buckling analysis of expansion tube, quasi-static analysis, linear buckling analysis and nonlinear post-buckling analysis. The effect of the geometry imperfections defined as linear superimposition of buckling modes is considered in the nonlinear post-buckling analysis. The results of finite element analysis indicate that the buckling load increase with increase of thickness of tube and geometry imperfection. Finial buckling shapes are changed with respect to the geometry imperfection.

MATERIAL RELIABILITY OF Ni ALLOY ELECTRODEPOSITION FOR STEAM GENERATOR TUBE REPAIR

  • Kim, Dong-Jin;Kim, Myong-Jin;Kim, Joung-Soo;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.231-236
    • /
    • 2007
  • Due to the occasional occurrences of stress corrosion cracking(SCC) in steam generator tubing(Alloy 600), degraded tubes are removed from service by plugging or are repaired for re-use. Since electrodeposition inside a tube does not entail parent tube deformation, residual stress in the tube can be minimized. In this work, tube restoration via electrodeposition inside a steam generator tubing was performed after developing the following: an anode probe to be installed inside a tube, a degreasing condition to remove dirt and grease, an activation condition for surface oxide elimination, a tightly adhered strike layer forming condition between the electro forming layer and the Alloy 600 tube, and the condition for an electroforming layer. The reliability of the electrodeposited material, with a variation of material properties, was evaluated as a function of the electrodeposit position in the vertical direction of a tube using the developed anode. It has been noted that the variation of the material properties along the electrodeposit length was acceptable in a process margin. To improve the reliability of a material property, the causes of the variation occurrence were presumed, and an attempt to minimize the variation has been made. A Ni alloy electrodeposition process is suggested as a primary water stress corrosion cracking(PWSCC) mitigation method for various components, including steam generator tubes. The Ni alloy electrodeposit formed inside a tube by using the installed assembly shows proper material properties as well as an excellent SCC resistance.

Efficiency of stiffening plates in fabricated concrete-filled tubes under monotonic compression

  • Albareda-Valls, Albert;Carreras, Jordi Maristany
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1023-1044
    • /
    • 2015
  • Concrete-filled tubes (CFT), formed by an outer steel tube filled with plain or reinforced concrete inside, have been increasingly used these recent decades as columns or beam-columns, especially for tall buildings in seismic areas due to their excellent structural response. This improved behavior is derived from the effect of confinement provided by the tube, since the compressive strength of concrete increases when being subjected to hydrostatic pressure. In circular CFTs under compression, the whole tube is uniformly tensioned due to the radial expansion of concrete. Contrarily, in rectangular and square-shaped CFTs, the lateral flanges become subjected to in-plane bending derived from this volumetric expansion, and this fact implies a reduction of the confinement effect of the core. This study presents a numerical analysis of different configurations of CFT stub columns with inner stiffening plates, limited to the study of the influence of these plates on the compressive behavior without eccentricity. The final purpose is to evaluate the efficiency in terms of strength and ductility of introducing stiffeners into circular and square CFT sections under large deformation axial loading.

Analysis of Tube Expansion by Hydroforming (하이드로포밍에 의한 튜브 확관에 대한 해석)

  • Lee, Jae-Won;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2253-2261
    • /
    • 2002
  • Recently the hydroforming technology has drawn a lot of attention because of its capability to produce high quality and light weight parts. In the present study, the tube expansion - one of the simplest hydroforming processes, has been investigated in order to understand fundamental phenomena such as deformation characteristics and effect of process parameters. As a result, the most important process parameters, which determine the state of stress at the expanded zone, were found to be pressure and die displacement. If the stress becomes equi-axial tension at the zone, necking occurs at some distance from the weld line and develops into a crack along the axial direction. Some aspects of mechanical property measurements as well as distributions of hardness and microstructure are also discussed in this paper.

Assessement of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tube (열간 후방압출된 Ti-6Al-4V 튜브의 성형결함 해석)

  • 염종택;심인규;나영상;박노광;홍성석;심인옥
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.347-350
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. To predict the forming-defects such as shear band, inner cracks or surface cracks, dynamic material model(DMM) including Ziegler's instability criterion and modified Cockcroft-Latham fracture criterion(C-L model) were used. These models were coupled to the internal variables generated from FE analysis. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The simulation results for the backward extrusion were compared with the experimental observations.

  • PDF