• Title/Summary/Keyword: Deformation model

Search Result 3,689, Processing Time 0.03 seconds

Cumulative deformation of high-speed railway bridge pier under repeated earthquakes

  • Gou, Hongye;Leng, Dan;Bao, Yi;Pu, Qianhui
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.391-399
    • /
    • 2019
  • Residual deformation of high-speed railway bridge piers is cumulative under repeated earthquakes, and influences the safety and ride comfort of high-speed trains. This paper investigates the effects of the peak ground acceleration, longitudinal reinforcement ratio, and axial compression ratio on the cumulative deformation through finite element analysis. A simply-supported beam bridge pier model is established using nonlinear beam-column elements in OpenSees, and validated against a shaking table test. Repeated earthquakes were input in the model. The results show that the cumulative deformation of the bridge piers under repeated earthquakes increases with the peak ground acceleration and the axial compression ratio, and decreases with the longitudinal reinforcement ratio.

Effect of plastic deformation on the martensitic transformations in TiNi alloy

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.311-319
    • /
    • 2022
  • A model of plastic deformation of the shape memory alloys which describes dislocation slip at the microlevel is developed. A condition similar to the Schmid law was adopted for the determination of dislocation slip onset. A description of the interaction of plastic deformation and martensitic transformations by taking into account the densities of deformation defects is proposed. It is shown that the model can correctly describe the effect of plastic strain on the shape memory effect. The proposed model is also capable of describing the two-way shape memory effect.

A Description of Thermomechanical Behavior Using a Rheological Model (리올러지 모델을 이용한 열적 기계적 변형 거동 모사)

  • Lee Keum-Oh;Hong Seong-Gu;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

Evaluation of Geogrid-Reinforced Subbase Layer Thickness of Permeable Flexible Pavements based on Permanent Deformation Model (지오그리드로 보강된 투수성 연성포장 보조기층제 영구변형을 고려한 층두께 산정 비교 연구)

  • Kwon, Hyeok Min;Oh, Jeongho;Han, Shin-In
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the effectiveness of a geogrid reinforced subbase of permeable flexible pavement structures with respect to permanent deformation. METHODS : Experimental trials employing a repeated triaxial load test scheme were conducted for both a geogrid reinforced subbase material and a control specimen to obtain the permanent deformation properties based on the VESYS model. Along with this, a finite element-based numerical analysis was conducted to predict pavement performance with respect to the rutting model incorporated into the analysis. RESULTSAND CONCLUSIONS : The results of the experimental study reveal that the geogrid reinforcement seems to be effective in mitigating permanent deformation of the subbase material. The permanent deformation was mostly achieved in the early stages of loading and then rapidly reached equilibrium as the number of load applications increased. The ultimate permanent deformation due to the geogrid reinforcement was about 1.5 times less than that of the control specimen. Numerical analysis showed that the permeable, flexible pavement structure with the geogrid reinforced subbase also exhibits less development of rutting throughout the service life. This reduction in rutting led to a 20% decrease in thickness of the subbase layer, which might be beneficial to reduce construction costs unless the structural adequacy is not ensured. In the near future, further verification must be conducted, both experimentally and numerically, to support these findings.

Simulation of Texture Evolution and Anisotropy Behavior in Dual Phase Steels during Deep Drawing Process (DP강의 디프드로잉 시 집합조직 발달과 이방성 거동 시뮬레이션)

  • Song, Young-Sik;Kim, Dae-Wan;Yang, Hoe-Seok;Han, Sung-Ho;Chin, Kwang-Gun;Choi, Shi-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.274-282
    • /
    • 2009
  • To investigate the evolution of deformation texture in dual phase (DP) steels during deep-drawing deformation, deep-drawing experiments were performed. Microtexture measurements were conducted using electron backscattered diffraction (EBSD) to analyze texture evolution. A rate-sensitive polycrystal model was used to predict texture evolution during deep-drawing deformation. In order to evaluate the strain path during deep-drawing deformation, a steady state was assumed in the flange part of a deep-drawn cup. A ratesensitive polycrystal model successfully predicted the texture evolution in DP steels during deep-drawing deformation. The final stable orientations were found to be strongly dependent on the initial location in the blank. Texture analysis revealed that the deep drawability of DP steels decreases as the true strain in the radial direction of the deep-drawn cup increases during deep-drawing deformation.

Large Deformation Analysis Using and Anistropic Hardening Constitutive Model : I. Formulation (비등방경화 구성모델을 이용한 대변형 해석 : I. 정식화)

  • 오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.207-214
    • /
    • 2002
  • A constitutive model was implemented in ABAQUS code, The constitutive equation can model the behavior for overall range of strain level from small to large deformation, which is based on anisotropic hardening rule and total stress concept. The formulation includes (1) finite strain formulation on the basis of Jaumann rate, (2) implicit stress integration and (3) consistent tangent moduli. Therefore, the mathematical background was established in order that large deformation analysis can be performed accurately and efficiently with the anisotropic constitutive model. Companion paper(Jeon et al., 2002) will contain the large deformation analysis results of examples with the constitutive model using ABAQUS.

Organ Shape Modeling Based on the Laplacian Deformation Framework for Surface-Based Morphometry Studies

  • Kim, Jae-Il;Park, Jin-Ah
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Recently, shape analysis of human organs has achieved much attention, owing to its potential to localize structural abnormalities. For a group-wise shape analysis, it is important to accurately restore the shape of a target structure in each subject and to build the inter-subject shape correspondences. To accomplish this, we propose a shape modeling method based on the Laplacian deformation framework. We deform a template model of a target structure in the segmented images while restoring subject-specific shape features by using Laplacian surface representation. In order to build the inter-subject shape correspondences, we implemented the progressive weighting scheme for adaptively controlling the rigidity parameter of the deformable model. This weighting scheme helps to preserve the relative distance between each point in the template model as much as possible during model deformation. This area-preserving deformation allows each point of the template model to be located at an anatomically consistent position in the target structure. Another advantage of our method is its application to human organs of non-spherical topology. We present the experiments for evaluating the robustness of shape modeling against large variations in shape and size with the synthetic sets of the second cervical vertebrae (C2), which has a complex shape with holes.

Applicability of Boussinesq Models for Wave Deformation and Wave-Induced Current (파랑변형 및 해빈류에 대한 Boussinesq 모형의 적용성 검토)

  • Cho, Young-Jun;Park, Il-Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.185-193
    • /
    • 2010
  • In the present study, wave deformation and wave-induced current were calculated under the regular wave conditions using the Boussinesq model. The model results of the wave deformation showed good agreements with the preceeding laboratory experiments of others. The wave-induced current of the fully developed sea state was calculated. For field application of model, the preceeding field data by others in the real scale of the water area were compared, the numerical result of wave deformation showed a relatively good agreement with the field data. Although the numerical result of wave-induced current was underestimated over the longshore bar developed area, the Boussinesq model is generally suitable to predict the wave-induced current.

Structural Analysis of a Tire using an ANSYS Workbench (ANSYS Workbench를 활용한 타이어 구조 해석)

  • Han, Cheolheui
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.9-12
    • /
    • 2011
  • Structural analysis of a tire is done using a commercial software, ANSYS Workbench. The properties of rubber of the tire is represented using a Mooney-Rivlin model. The bead in the tire is made of structural steel. 3D CAD model of the tire is obtained from a commercial CAD-specialized software, CATIA. Using an imported 3D CAD geometric model, a mesh system with fifty thousand nodes is constructed using ANSYS. A time-variant point force is applied to the rim of the tire, and the deformation of the tire is computed. It is found that both bending and twisting of the tire are observed where the point force is applied. The deformation of the tire is asymmetric, which results in the help of ripping the tire using the helper. It is also found that the deformation undergoes linearly with the applied force. When the force is larger than 1500N, then the deformation becomes larger than the half of the thickness of the tire. In the future, a more realistic rubber model will be applied and validated with the measured data.

  • PDF

Deformation Monitoring and Prediction Technique of Existing Subway Tunnel: A Case Study of Guangzhou Subway in China

  • Qiu, Dongwei;Huang, He;Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.623-629
    • /
    • 2012
  • During the construction of crossing engineering one of the important measures to ensure the safety of subway operation is the implementation of deformation surveying to the existing subway tunnel. Guangzhou new subway line 2 engineering which crosses the existing tunnel is taken as the background. How to achieve intelligent and automatic deformation surveying forecast during the subway tunnel construction process is studied. Because large amount of surveying data exists in the subway construction, deformation analysis is difficult and prediction has low accuracy, a subway intelligent deformation prediction model based on the PBIL and support vector machine is proposed. The PBIL algorithm is used to optimize the exact key parameters combination of support vector machine though probability analysis and thereby the predictive ability of the model deformation is greatly improved. Through applications on the Guangzhou subway across deformation surveying deformation engineering the prediction method's predictive ability has high accuracy and the method has high practicality. It can support effective solution to the implementation of the comprehensive and accurate surveying and early warning under subway operation conditions with the environmental interference and complex deformation.