• Title/Summary/Keyword: Deformation Patterns

Search Result 389, Processing Time 0.024 seconds

The influence of non-linear carbon nanotube reinforcement on the natural frequencies of composite beams

  • Mehmet Avcar;Lazreg Hadji;Omer Civalek
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.421-433
    • /
    • 2023
  • In the present paper, the influences of the variation of exponent of volume fraction of carbon nanotubes (CNTs) on the natural frequencies (NFs) of the carbon nanotube-reinforced composite (CNTRC) beams under four different boundary conditions (BCs) are investigated. The single-walled carbon nanotubes (SWCNTs) are assumed to be aligned and dispersed in a polymeric matrix with various reinforcing patterns, according to the variation of exponent of volume fraction of CNTs for functionally graded (FG) reinforcements. Besides, uniform distribution (UD) of reinforcement is also considered to analyze the influence of the non-linear (NL) variation of the reinforcement of CNTs. Using Hamilton's principle and third-order shear deformation theory (TSDT), the equations of motion of the CNTRC beam are derived. Under four different BCs, the resulting equations are solved analytically. To verify the present formulation, comparison investigations are conducted. To examine the impacts of several factors on the NFs of the CNTRC beams, numerical examples and some benchmark results are presented.

Poroelastic vibrations of FG Porous higher-order shear deformable

  • Jing Li;Fei Tang;Yasser Alashker;Farhan Alhosny
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.503-516
    • /
    • 2023
  • In the current examination, a trigonometric shear deformation theory is hired to govern natural frequencies of a functionally graded porous microplate which is covered by two nanocomposite layers. The properties of the structure are varied based on the specified patterns. Utilizing the modified form of couple stress theory for taking the scale effect into account in conjunction with Hamilton's principle, the motion equations are obtained. Then, they are solved via Fourier series functions as an analytical approach. After confirming the results' accuracy, various parameters' effect on the results is investigated. Designing and manufacturing more efficient structures, especially those that are subjected to multi-physical loads can be accounted as findings of this work.

Metamorphic P-T Paths from Devonian Pelitic Schists from the Pelham Dome, Massachusetts, USA (뉴잉글랜드 펠암돔 주변부 데본기 변성 이질암의 변성 온도-압력 경로)

  • 김형수
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.211-237
    • /
    • 2000
  • Major element zoning has been analyzed in garnet porphroblasts obtained from the Grt-St and Ky-Grt-St grade assemblages in Zones I on the northern flank of the Pelham Dome, north central Massachusetts. These porphyroblasts grew during multiple phases of deformation and meta-morphism revealed by the inclusion trail geometry plus the chemical zoning patterns within garnet porphyroblasts. Unusual zoning patterns, including zoning reversals and gradient changes in XMn, zlgzag patterns in Fe/(Fe +Mg) and staircase-shaped patterns in XCa, are coincident with textural truncations and other changes in microstructure within the garnet porphrublasts. Chemical variations in plagioclase, biotite, muscovite and staurolite combined with inclusion trail geometry and petrography reveal that the garnet zoning patterns are modified by combinations of the following. (1) Uni-and divariant reactions involving garnet consumption(Grt+ Chl+Ms=St+Bt+Qtz + $H_2$O) and production(St+Ms + Qtz= Bt+ Grt +A1$_2$$SiO_{5}$ + $H_2$O). (2) Deformation induced episudic ionit dissolution, preferential diffusion and re-distribution during foliation development. (3) P-T changes during growth of the porphyroblasts. The P-T paths combined with petrographic and inclusion trail morphology observations consist of two pattens; (1) heating/compression during NW-SE shortening; and (2) decompression with cooling during NNW-SSE shortening. Based on temperature-time(T-t) geochronological data and late-Paleozoic tectonic model, Alleghanian metamorphism, which is the result of heterogeneous shearing concentrated along the boundary between the Abalone Terrane(Pelham dome) and cover rocks(Bronson Hill Terrane), has produced Ky-St-Ms mineral assemblage during Pennsylvanian(290-300 Ma) in Shutesbury area. However, temperature of alleghanian metamorphism was not high enough to form garnet and staurolite in the Northfiled syncline area. Alleghanian metamorphism has affected only the matrix due to heterogeneous shearing in the study area.

  • PDF

Textural Implications of Fine-Grained Peridotite Xenoliths in Basaltic Rocks from Jeju Island (제주도 현무암에 포획된 세립질 맨틀 페리도타이트 포획암의 조직적 특성)

  • Yang, Kyoung-Hee;Nam, Bok-Hyun;Kim, Jin-Seop;Szabo, Csaba
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Fine-grained peridotite xenoliths are rarely trapped in the basaltic rocks from the southeastern part of Jeju Island. Based on textural characteristics of the constituent phases showing uniform-sized, fine-grained tabular to mosaic grains with rare porphyroclastic relics, the studied samples can be defined as fine-grained, foliated porphyroclastic peridotites (FPP). Almost no significant difference among the FPPs in textures and major element compositions implies that the FPPs were derived from a structural domain, experiencing similar deformation events and deformation patterns. Moreover, the bimodal distribution with kink-banded porphyroclasts ($2{\sim}3mm$) and stain-free neoblasts ($200{\sim}300{\mu}m$), straight to gently curved grain boundaries with triple junctions, interstitial melt pockets, and microstructures for migrating grain boundary suggest that the studied samples went through dynamic recrystallization (${\pm}$ static recrystallization) in the presence of melt/fluid movement along foliation planes. No notable difference between the FPP and common protogranular xenoliths in major element compositions and geochemical evolution also implies that the FPP and protogranular xenoliths were from a similar horizon. Thus, the textural and geochemical characteristics of the FPPs reflects deformation events occurred at a localized and narrow zone within the lithospheric mantle beneath the Jeju Island. Although further detailed studies are necessary to define deformation events, the most possible process which could trigger deformation in the FPP in the rigid upper mantle was the ascending basaltic magma forming high-stress deformation zones. The suggested high-stress deformation zones in the lithosphere beneath the Jeju Island may be produced by paleo-faulting events related to the ascent of basalt magma before Jeju Island was formed.

On the Latest Tectonic Environment Around Northern Part of the Yangsan Fault, Korea (양산단층 북부 일대의 최후기 지구조환경에 대해)

  • Ryoo, Chung-Ryul;Kang, Ji-Hoon;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.173-184
    • /
    • 2018
  • Geologic structures related to the latest event in the evolution around Gyeongsang Basin are mainly associated with the Yangsan Fault. In particular, the structures in the northern part of the Yangsan Fault are mainly observed in the region between Bogyeongsa Temple and Danguri. Such structures are also clustered in the vicinity of the Yangsan Fault, exhibiting similar geometric and kinematic patterns. In general, N-S and NE-SW trending fractures and tectonogeomorphic lineament are mainly eastward dipping reverse faults, such that the blocks in the east of the structures moved west or northwest. The reverse faults are segmented by NW trending fractures that accommodate strike-slip movements. The reverse faults and geomorphotectonic lineaments related to the latest event of deformation in the northern part of the Yangsan Fault show a westward convex patterns. We infer that these structures were initially normal faults that formed during a NW-SE extensional environment and were later reactivated during an E-W compressional one. Such a deformation pattern is also well developed around Pohang-Heunghae area based on the tectonogeomorphic analysis, which appears to be closely related to the Pohang Earthquake (15 Nov. 2017), and its development of the surface rupture and highly damaged zones.

An accurate analytical model for the buckling analysis of FG-CNT reinforced composite beams resting on an elastic foundation with arbitrary boundary conditions

  • Aicha Remil;Mohamed-Ouejdi Belarbi;Aicha Bessaim;Mohammed Sid Ahmed Houari;Ahmed Bouamoud;Ahmed Amine Daikh;Abderrahmane Mouffoki;Abdelouahed Tounsi;Amin Hamdi;Mohamed A. Eltaher
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.267-276
    • /
    • 2023
  • The main purpose of the current research is to develop an efficient two variables trigonometric shear deformation beam theory to investigate the buckling behavior of symmetric and non-symmetric functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beam resting on an elastic foundation with various boundary conditions. The proposed theory obviates the use to shear correction factors as it satisfies the parabolic variation of through-thickness shear stress distribution. The composite beam is made of a polymeric matrix reinforced by aligned and distributed single-walled carbon nanotubes (SWCNTs) with different patterns of reinforcement. The material properties of the FG-CNTRC beam are estimated by using the rule of mixture. The governing equilibrium equations are solved by using new analytical solutions based on the Galerkin method. The robustness and accuracy of the proposed analytical model are demonstrated by comparing its results with those available by other researchers in the existing literature. Moreover, a comprehensive parametric study is presented and discussed in detail to show the effects of CNTs volume fraction, distribution patterns of CNTs, boundary conditions, length-to-thickness ratio, and spring constant factors on the buckling response of FG-CNTRC beam. Some new referential results are reported for the first time, which will serve as a benchmark for future research.

Estimation of Strain for Large Deformation in SMA-textile Actuator Using Nonlinear Geometry Analysis (비선형 기하해석을 이용한 SMA 섬유 액츄에이터의 대변형에 대한 변형률 추정)

  • Muhammad Umar Elahi;Jaehyun Jung;Salman Khalid;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.259-265
    • /
    • 2024
  • Shape memory alloy (SMA)-textile actuators have attracted significant attention across various fields, including soft robotics and wearable technology. These smooth actuators are developed by combining SMA and simple textile fibers and then knitting them into two loop patterns known as the knit (K-loop) and plain (P-loop) patterns. Both loops are distinguished by opposite bending characteristics owing to loop head geometry. However, the knitting processes for these actuator sheets require expertise and time, resulting in high production costs for knitted loop actuation sheets. This study introduces a novel method by which to assess the strain in SMA textile-based actuators, which experience large deformations when subjected to voltage. Owing to the highly nonlinear constitutive equations of the SMA material, developing an analytical model for numerical analysis is challenging. Therefore, this study employs a novel approach that utilizes a linear constitutive equation to analyze large deformations in SMA material with nonlinear geometry considerations. The user-defined material (UMAT) subroutine integrates the linear constitutive equation into the ABAQUS software suite. This equivalent unit cell (EUC) model is validated by comparing the experimental bending actuation results of K-loops and P-loops.

Investigation of shear transfer mechanisms in repaired damaged concrete columns strengthened with RC jackets

  • Achillopoulou, D.V;Karabinis, A.I
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.575-598
    • /
    • 2013
  • The study presents the results of an experimental program concerning the shear force transfer between reinforced concrete (RC) jackets and existing columns with damages. In order to investigate the effectiveness of the repair method applied and the contribution of each shear transfer mechanism of the interface. It includes 22 concrete columns (core) (of 24,37MPa concrete strength) with square section (150mm side, 500 mm height and scale 1:2). Ten columns had initial construction damages and twelve were subjected to initial axial load. Sixteen columns have full jacketing at all four faces with 80mm thickness (of 31,7MPa concrete strength) and contain longitudinal bars (of 500MPa nominal strength) and closed stirrups spaced at 25mm, 50mm or 100mm (of 220MPa nominal strength). Fourteen of them contain dowels at the interface between old and new concrete. All columns were subjected to repeated (pseudo-seismic) axial compression with increasing deformation cycles up to failure with or without jacketing. Two load patterns were selected to examine the difference of the behavior of columns. The effects of the initial damages, of the reinforcement of the interface (dowels) and of the confinement generated by the stirrups are investigated through axial- deformation (slip) diagrams and the energy absorbed diagrams. The results indicate that the initial damages affect the total behavior of the column and the capacity of the interface to shear mechanisms and to slip: a) the maximum bearing load of old column is decreased affecting at the same time the loading capacity of the jacketed element, b) suitable repair of initially damaged specimens increases the capacity of the jacketed column to transfer load through the interface.

Expression and characteristics of kidult in contemporary women's collection (현대 여성 컬렉션에 나타난 키덜트적 표현 방법 및 표현 특성)

  • Jia, Zhai;Lee, Yoon Mee;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.24 no.5
    • /
    • pp.670-686
    • /
    • 2016
  • The purpose of this study is to delineate and analyze the expression of the kidult and its characteristics and thereby provide data to be used for fashion design in various manners as well as to suggest creative and varied possibilities of fashion design. As a way to study, the author of this paper organized the general terms, concepts and definitions concerning the kidult in the previous papers and journals. The data was collected from the collections represent the characteristics of kidult especially from 2006 to 2015. The results are as follows: Firstly, The characters stimulating the innocence of children were used the most for infantile expression. Parody used characters in the movie or famous logos. Deformation was used to create designs by way of distortion and deformation. Exaggeration thereby showing visually strong impression and inducing surprise and unexpectedness. Depaysement was useful to let us describe concepts and enhance our infinite creativity and interests about objects using surrealistic. Secondly, Infantile characteristics used the images of toys with infantile imagination and sense of humor. Fantasy introduced objects or expressed a dream-like feeling. Unexpectedness used two-faced ideas or conflicting ideas to express conflicts, collision and an interchange with heterogeneous things, avoiding the limit of size and the simplicity of materials. Parody used jocular expressions, satire and ironic expressions to express the original image in a fun manner. Exaggeration transformed changed the structure to restructure objects in a subjective and creative manner, thereby expressing creative patterns using various subject matters by way of special modeling or distortion and transformation.

Behavioral Characteristics of the Yangsan Fault based on Geometric Analysis of Fault Slip (단층슬립의 기하분석에 의한 양산단층의 거동 특성)

  • Chang, Chun-Joong;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.277-285
    • /
    • 2009
  • In order to assess the fault behavior by the geometric analysis of fault slip, the study area between Yangsan city and Shinkwang-myon, Pohang city along the strike of the Yangsan fault is divided into 5 domains($A{\sim}E$ domains) based on the strike change of main fault, the type of fault termination, the cyclic variation of fault zone width, deformation pattern of fault rocks and angular deviation of secondary shears. And, we would apply the relationship between the mode of fault sliding and the resultant deformation texture obtained from previous several experimental studies of simulated fault gouge to the study of the Yangsan fault. To understand sliding behavior of the fault we measured the data of fault attitude and fault slip, and analyzed relationships between the main fault and secondary Riedel shear along the Yangsan fault. The sliding behavioral patterns in each section were analyzed as followings; the straight sections of A, D and E domains were analyzed as the creeping section of stably sliding. In contrast, the curved section of B domain was analyzed as the locked section of stick-slip movement.