• Title/Summary/Keyword: Deformation Patterns

Search Result 385, Processing Time 0.029 seconds

Proposition of Improved Semi-Analytical Relationship considering Response Characteristics of Buried Pipeline (지중매설관로의 거동특성을 반영한 개선된 해석적 관계식의 제안)

  • 김태욱;임윤묵;김문겸
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.37-46
    • /
    • 2003
  • Response analysis of buried pipeline subjected to permanent ground deformation(PGD) due to liquefaction is mainly executed by use of numerical analysis or semi-analytical relationship, Especially for the semi-analytical relationship considering transverse PGD, it has somewhat limited applicability : since it has different formula according to the width of PGD and does not reflect various patterns of PGD which is caused by the decrease of soil stiffness, Therefore, in this study, the applicability of existing analytical relationship is closely investigated through the comparison of FEM results at first. And then, based on meaningful contemplation, improved analytical relationship is proposed. The proposed one models the system behavior of buried pipeline as the combination of cable and beam, and thus it is applicable to arbitrary width of PGD, Moreover, it does reflect various patterns of PGD by introducing interaction pattern coefficient. Through the comparison of numerical results using the FEM and the proposed analytical relationship, rational applicability is objectively verified and noticeable considerations are discussed, Moreover, analyses considering the change of PGD magnitude and patterns are performed.

A Study on the Micro-Formability of Al 5083 Superplastic Alloy Using Micro-Forging System (마이크로 단조 시스템을 이용한 Al 5083 초소성 합금의 마이크로 성형성에 관한 연구)

  • Son S. C.;Kang S. G.;Park K. Y.;Na Y. S.;Lee J. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.432-438
    • /
    • 2005
  • Among the most of manufacturing process, plastic deformation method offers a significant advantage in productivity and enable mass production with controlled quality and low cost. From the point of view, micro forming is a well suited technology in manufacturing very small metallic parts, in particular for mass production, as they are required in many industrial products. Meanwhile, Al 5083 superplastic alloy with very small grains has a great advantage in achieving micro deformation under low stress due to its relatively low strength at a specific high temperature range. This paper describes the micro formability of Al 5083 superplastic alloy and its application to die forging of micro patterns. Micro formability tests of Al 5083 superplastic alloy were carried out with the specially designed micro forging system by using V-grooved micro dies and pyramidal dies made of (100) silicon. With these dies, micro forging was conducted by varying the applied load, material temperature and forging time The micro formability of Al 5083 superplastic alloy was evaluated by comparing $R_f$ value, where $R_f\;=\;A_f/A_v$ ($A_v$ : cross-sectional area of the flowed metal, $A_v$ : cross sectional area of V-groove). The micro formability of 3 dimensional Patterns was also evaluated using Pyramidal type micro dies.

Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing (온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구)

  • Lee, Y.S.;Lee, K.S.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.

Time Series Analysis for Predicting Deformation of Earth Retaining Walls (시계열 분석을 이용한 흙막이 벽체 변형 예측)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.65-79
    • /
    • 2024
  • This study employs traditional statistical auto-regressive integrated moving average (ARIMA) and deep learning-based long short-term memory (LSTM) models to predict the deformation of earth retaining walls using inclinometer data from excavation sites. It compares the predictive capabilities of both models. The ARIMA model excels in analyzing linear patterns as time progresses, while the LSTM model is adept at handling complex nonlinear patterns and long-term dependencies in the data. This research includes preprocessing of inclinometer measurement data, performance evaluation across various data lengths and input conditions, and demonstrates that the LSTM model provides statistically significant improvements in prediction accuracy over the ARIMA model. The findings suggest that LSTM models can effectively assess the stability of retaining walls at excavation sites. Additionally, this study is expected to contribute to the development of safety monitoring systems at excavation sites and the advancement of time series prediction models.

Experimental study on the influence of the ground surface slope on the longitudinal load transfer in shallow tunnel (얕은 터널에서 지표경사가 종방향 하중전이에 미치는 영향에 대한 실험적 연구)

  • Yim, Il Jae;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.887-903
    • /
    • 2017
  • Lots of shallow tunnels are constructed in the mountainous areas where the stress distribution in the ground around tunnel is not simple, also the impact of stress conditions on the longitudinal load transfer characteristics is unclear. The tunnel construction methods and the ground conditions would also affect the longitudinal load transfer characteristics which would be dependant on the displacement patterns of tunnel face. Therefore, in this study, the slope of the ground surface was varied in $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and the longitudinal load transfer depended on the deformation conditions of tunnelface (that were maximum deformation on the top, constant deformation, and maximum deformation on the bottom), and the stress distribution at tunnelface. As results, when the tunnelface deformed, the earth presure on the tunnelface decreased and the load at tunnel crown increased. The load transferred on the crown was influenced by the earth presure on tunnel face. Smaller load would be transfered to the wide areas when the slope of ground surface decreased. When the slope of ground surface became larger, the longitudinal load transfer would be smaller and would be concentrated on tunnelface, In addition, the shape of the transferred load distribution in the longitudinal direction was dependant on the deformation shape of tunnelface. The deformation shape of tunnelface and stress conditions in longitudinal sections would affect the shape and the magnitude of the load transfer in the longitudinal directions.

The temperature condition for the mylonitization of the Cheongsan granite, Korea (변형된 청산 화강암의 압쇄암화작용시의 변형온도 - 변형된 청산 화강암의 구조 해석 -)

Methods to determine the size of pant patterns with curved design lines and their three dimensional construction using 3D virtual fitting (곡선 절개형 바지의 패턴사이즈 변형방법과 가상착의곡면3D)

  • Lee, Heeran
    • Journal of Fashion Business
    • /
    • v.20 no.4
    • /
    • pp.153-171
    • /
    • 2016
  • With the advent of smart clothing for health care and sports, the sophisticated designs with curved seams are drawing attention. One of the problems in those clothing is to determine the design curves in 2D pattern, such that it corresponds to the lines on the intended 3D body. Moreover, the difficulty increases when the original pattern needs to be changed for various sizes and body types. We compare two methods of pattern enlargement in this paper: one is the offset/projection type, and the other is the split grading type. For the enlarged pattern with offset/projection type, the 3D surface offset was first adopted to transform the standard lower body to the target larger size; next, the design lines were projected to the new 3D surface, following which the 3D pattern was developed from the newly transformed 3D surface. In the second method, the enlarged pant patterns were developed by the split grading method. Here, a 3D pattern was developed from the initial body, and then enlarged to the target size by the conventional split grading method. Two feminine pants patterns were examined by 3D virtual fitting. We observed that the 3D offset/projection pants pattern was well fitted, having an evenly distributed surplus, as compared with the sample developed using the split grading method. The difference between the two patterns were apparent at the location where several curved lines merged.

Morphological Patterns of the Anterior Median Fissure in the Cervical Spinal Cord Evaluated by Computed Tomography After Myelography

  • Oichi, Yuki;Hanakita, Junya;Takahashi, Toshiyuki;Minami, Manabu;Kawaoka, Taigo;Funakoshi, Yusuke;Kawauchi, Takeshi;Ohtake, Yasufumi
    • Neurospine
    • /
    • v.15 no.4
    • /
    • pp.388-393
    • /
    • 2018
  • Objective: Computed tomography following myelography (CTM) revealed an unusual flow of contrast dye into the anterior median fissure (AMF) in a patient with cervical spondylotic myelopathy. Since then, several AMF configurations have been observed on CTM. Therefore, we evaluated morphological patterns of the AMF on CTM and investigated the significance and mechanisms of contrast dye flow into the AMF. Methods: Morphological patterns of the AMF on CTM were examined in 79 patients. Group A (24 patients) underwent surgery because of symptomatic cervical myelopathy. Group B (43 patients) had no clinical symptoms but showed spinal cord compression on CTM. Group C (12 patients), who showed neither clinical symptoms nor cord changes, underwent CTM for lumbar lesion evaluation. AMF patterns were classified into 4 types according to their configurations on CTM (reversed T, Y, V, and O types). Results: In group B, the reversed T type and Y type appeared significantly more often near the compressed portion (p<0.001). A similar tendency was seen in group A. The V and O types were most frequently observed in group C (p<0.001). Conclusion: On CTM, contrast dye tends to flow into the AMF of the cervical cord when the spinal cord is compressed. We speculate that there may be 3 possible mechanisms for this phenomenon: deformation of the epipial layer of the AMF due to cervical cord compression, AMF dilatation due to atrophy of the anterior funiculus or anterior horn, and temporary AMF dilatation when it becomes an alternative route for cerebrospinal fluid circulation.

Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes

  • Daikh, Ahmed Amine;Drai, Ahmed;Houari, Mohamed Sid Ahmed;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.643-656
    • /
    • 2020
  • This article presents a comprehensive static analysis of simply supported cross-ply carbon nanotubes reinforced composite (CNTRC) laminated nanobeams under various loading profiles. The nonlocal strain gradient constitutive relation is exploited to present the size-dependence of nano-scale. New higher shear deformation beam theory with hyperbolic function is proposed to satisfy the zero-shear effect at boundaries and parabolic variation through the thickness. Carbon nanotubes (CNTs), as the reinforced elements, are distributed through the beam thickness with different distribution functions, which are, uniform distribution (UD-CNTRC), V- distribution (FG-V CNTRC), O- distribution (FG-O CNTRC) and X- distribution (FG-X CNTRC). The equilibrium equations are derived, and Fourier series function are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear or sinusoidal mechanical loadings. Numerical results are obtained to present influences of CNTs reinforcement patterns, composite laminate structure, nonlocal parameter, length scale parameter, geometric parameters on center deflection ad stresses of CNTRC laminated nanobeams. The proposed model is effective in analysis and design of composite structure ranging from macro-scale to nano-scale.

Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation

  • Bamdad, Mostafa;Mohammadimehr, Mehdi;Alambeigi, Kazem
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.671-687
    • /
    • 2020
  • The aim of this research is to analyze buckling and bending behavior of a sandwich Reddy beam with porous core and composite face sheets reinforced by boron nitride nanotubes (BNNTs) and shape memory alloy (SMA) wires resting on Vlasov's foundation. To this end, first, displacement field's equations are written based on the higher-order shear deformation theory (HSDT). And also, to model the SMA wire properties, constitutive equation of Brinson is used. Then, by utilizing the principle of minimum potential energy, the governing equations are derived and also, Navier's analytical solution is applied to solve the governing equations of the sandwich beam. The effect of some important parameters such as SMA temperature, the volume fraction of SMA, the coefficient of porosity, different patterns of BNNTs and porous distributions on the behavior of buckling and bending of the sandwich beam are investigated. The obtained results show that when SMA wires are in martensite phase, the maximum deflection of the sandwich beam decreases and the critical buckling load increases significantly. Furthermore, the porosity coefficient plays an important role in the maximum deflection and the critical buckling load. It is concluded that increasing porosity coefficient, regardless of porous distribution, leads to an increase in the critical buckling load and a decrease in the maximum deflection of the sandwich beam.