• Title/Summary/Keyword: Deformation

Search Result 13,567, Processing Time 0.039 seconds

The Prevention of the Longitudinal Deformation on the Built­Up Beam by using Induction Heating

  • Park, J.U.;Lee, C.H.;Chang, K.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.7-14
    • /
    • 2003
  • During the manufacture of a ship, longitudinal deformation is produced by fillet welding on the Built­Up beam used to improve the longitudinal strength of a ship. This deformation needs a correcting process separate from a manufacture process and decreases productivity and quality. This deformation is caused by welding moment, which is the value multiplied the shrinking force due to welding by the distance from the neutral axis on a cross section of Built­Up beam. This deformation can be offset by generating a moment which is the same magnitude with and is located in an opposite direction to the welding moment on web plate by induction heating. Accordingly, this study clarifies the creation mechanism of the longitudinal deformation on Built­Up beam with FEM analysis and presents the preventative method of this deformation by induction heating basing the mechanism and verifies its validity through analysis and experiments. The induction heating used here is performed by deciding its location and quantity with experiments and simple equations and by applying them to a real structure.

  • PDF

Effect of Deformation Temperature on Mechanical Properties of High Manganese Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 가공온도의 영향)

  • Kang, Chang-Yong;Hur, Tae-Young;Kim, Young-Hwa;Koo, Cha-Jin;Han, Hyun-Sung;Lee, Sang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.55-60
    • /
    • 2012
  • This study was carried out to investigate the effect of the deformation temperature in high manganese austenitic stainless steel. ${\alpha}$'-martensite was formed with a specific direction by deformation. The volume fraction of the deformation induced martensite was increased by increasing the degree of deformation and decreasing the deformation temperature. With the increase in the deformation, the hardness and tensile strength were increased, while the elongation was rapidly decreased at the initial stage of the deformation, and then gradually decreased. The hardness and tensile strength were increased and the elongation was decreased with adecrease in the deformation temperature. The hardness and tensile strength were strongly controlled by the volume fraction of martensite, but the elongation was controlled by the transformation behavior of the deformation induced martensite.

Evaluation of the effect of mechanical deformation on beam isocenter properties of the SC200 scanning beam delivery system

  • Wang, Ming;Zheng, Jinxing;Song, Yuntao;Li, Ming;Zeng, Xianhu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2064-2071
    • /
    • 2020
  • For proton pencil beam scanning (PBS) technology, the accuracy of the dose distribution in a patient is sensitive to the properties of the incident beam. However, mechanical deformation of the proton therapy facility may occur, and this could be an important factor affecting the proton dose distribution in patients. In this paper, we investigated the effect of deformation on an SC200 proton facility's beam isocenter properties. First, mechanical deformation of the PBS nozzle, L-shape plate, and gantry were simulated using a Finite Element code, ANSYS. Then, the impact of the mechanical deformation on the beam's isocenter properties was evaluated using empirical formulas. In addition, we considered the simplest case that could affect the properties of the incident beam (i.e. if only the bending magnet (BG3) has an error in its mounting alignment), and the effect of the beam optics offset on the isocenter characteristics was evaluated. The results showed that the deformation of the beam position in the X and Y direction was less than 0.27 mm, which meets the structural design requirements. Compared to the mechanical deformation of the L-shape plate, the deformation of the gantry had more influence on the beam's isocenter properties. When the error in the mounting alignment of the BG3 is equal to or more than 0.3 mm, the beam deformation at the isocenter exceeds the maximum accepted deformation limits. Generally speaking, for the current design of the SC200 scanning beam delivery system, the effects of mechanical deformation meet the maximum accepted beam deformation limits. In order to further study the effect of the incident beam optics on the isocenter properties, a fine-scale Monte Carlo model including factors relating to the PBS nozzle and the BG3 should be developed in future research.

REMARKS ON SIMPLY k-CONNECTIVITY AND k-DEFORMATION RETRACT IN DIGITAL TOPOLOGY

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.519-530
    • /
    • 2014
  • To study a deformation of a digital space from the viewpoint of digital homotopy theory, we have often used the notions of a weak k-deformation retract [20] and a strong k-deformation retract [10, 12, 13]. Thus the papers [10, 12, 13, 16] firstly developed the notion of a strong k-deformation retract which can play an important role in studying a homotopic thinning of a digital space. Besides, the paper [3] deals with a k-deformation retract and its homotopic property related to a digital fundamental group. Thus, as a survey article, comparing among a k-deformation retract in [3], a strong k-deformation retract in [10, 12, 13], a weak deformation k-retract in [20] and a digital k-homotopy equivalence [5, 24], we observe some relationships among them from the viewpoint of digital homotopy theory. Furthermore, the present paper deals with some parts of the preprint [10] which were not published in a journal (see Proposition 3.1). Finally, the present paper corrects Boxer's paper [3] as follows: even though the paper [3] referred to the notion of a digital homotopy equivalence (or a same k-homotopy type) which is a special kind of a k-deformation retract, we need to point out that the notion was already developed in [5] instead of [3] and further corrects the proof of Theorem 4.5 of Boxer's paper [3] (see the proof of Theorem 4.1 in the present paper). While the paper [4] refers some properties of a deck transformation group (or an automorphism group) of digital covering space without any citation, the study was early done by Han in his paper (see the paper [14]).

Austenite Recrystallization and Ferrite Refinement of a Nb Bearing Low Carbon Steel by Heavy Hot Deformation (강가공에 의한 Nb함유 저탄소강의 오스테나이트 재결정과 페라이트 미세화)

  • Lee, Sang Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.3-11
    • /
    • 2005
  • Using various thermo-mechanical schedules characterized by varying reheating temperature, deformation temperature and strain, the austenite recrystallization and ferrite refinement of a Nb bearing low carbon steel(0.15C-0.25Si-1.11Mn-0.04Nb) were investigated. For single pass heavy deformations at $800^{\circ}C$, the 40% deformed austenite was not recrystallized while the 80% deformed one was fully recrystallized. Ferrite grains formed in the 80% deformed specimen was not very small compared with those in the 40% deformed specimen, which implied the recrystallized austenite was not more beneficial to ferrite refinement than the non-recrystallized one. In case of deformation in low temperature austenite region, a multi-pass deformation made finer ferrites than a single-pass deformation, as the total reduction was the same, due to more ferrite nucleation sites in the non-recrystallization of austenite for multi-pass deformation. When specimen was deformed at $775^{\circ}C$ that was $10^{\circ}C$ higher than $Ar_3$, the ferrite of about $1{\mu}m$ was formed through deformation induced ferrite transformation(DIFT), and the amount of ferrite was increased with increasing reduction. Dislocation density was very high and no carbides were observed in DIFT ferrites, presumably due to supersaturated carbon solution. By deformation in two phase(50% austenite+50% ferrite) region the very refined ferrite grains of less than $1{\mu}m$ were formed certainly by recovery and recrystallization of deformed ferrites and, a large portion of ferrites were divided by subgrain boundaries with misorientation angles smaller than 10 degrees.

Characteristics and prediction methods for tunnel deformations induced by excavations

  • Zheng, Gang;Du, Yiming;Cheng, Xuesong;Diao, Yu;Deng, Xu;Wang, Fanjun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.361-397
    • /
    • 2017
  • The unloading effect from excavations can cause the deformation of adjacent tunnels, which may seriously influence the operation and safety of those tunnels. However, systematic studies of the deformation characteristics of tunnels located along side excavations are limited, and simplified methods to predict the influence of excavations on tunnels are also rare. In this study, the simulation capability of a finite element method (FEM) considering the small-strain characteristics of soil was verified using a case study. Then, a large number of FEM simulations examining the influence of excavations on adjacent tunnels were conducted. Based on the simulation results, the deformation characteristics of tunnels at different positions and under four deformation modes of the retaining structure were analyzed. The results indicate that the deformation mode of the retaining structure has a significant influence on the deformation of certain tunnels. When the deformation magnitudes of the retaining structures are the same, the influence degree of the excavation on the tunnel increased in this order: from cantilever type to convex type to composite type to kick-in type. In practical projects, the deformation mode of the retaining structure should be optimized according to the tunnel position, and kick-in deformation should be avoided. Furthermore, two methods to predict the influence of excavations on adjacent tunnels are proposed. Design charts, in terms of normalized tunnel deformation contours, can be used to quantitatively estimate the tunnel deformation. The design table of the excavation influence zones can be applied to determine which influence zone the tunnel is located in.

Prediction of Post-Deformation for Plastic Component Considering Residual Stress and Viscoelasticity (판류응력 및 점탄성을 고려한 플라스틱 부품의 후면형 예측)

  • Moon, H.I.;Kim, H.Y.;Choi, C.W.;Jeong, K.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.341-344
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But. using, transporting, and keeping of plastic component was happened post-deformation. As time goes by and temperature is changed, the post-deformation causes the problems of exterior design and performance. But, it is difficult to estimate the post-deformation by only thermal deformation analysis. Also, the estimation technique of the pest-deformation must be easily applied to product development and it should be reliable because development time of product is limited. In the paper. the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF

Effects of passivation layer on the thermal deformation behavior of metal film used in semiconductor devices (반도체용 박막재료의 열응력-변형 특성에 미치는 passivation 층의 영향 분석)

  • Choi, Ho-Seong;Lee, Kwang-Ryol;Kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.732-734
    • /
    • 1998
  • Metal thin films such as aluminum have been used as interconnects in semiconductor device. Recently, these materials are applied to structural materials in microsensors and microactuators. In this study, we evaluate deformation and strength behavior of aluminum alloy film. Three layer model for thermal deformation of multilayered thin film material is introduced and applied to Si/Al(1%Si)/$SiO_2$ system. Based on beam bending theory and concept of bending strain. elastic and elastic/plastic thermal deformation behaviors of multilayered materials can be estimated. In the case of plastic deformation of ductile layer, strain rate equations based on deformation mechanism map are employed for describe the stress relaxation effect. To experimentally examine deformation of multilayered thin film materials, in-situ laser scanning method is used to measure curvature of specimens during heating and cooling. The thickness of $SiO_2$ layer is varied to estimate third-layer effect of thermal deformation of metal films, and its effect on deformation behavior are discussed.

  • PDF

A Numerical Study on Mechanical Behavior with Cyclic Deformation of Anterior Cruciate Ligament (슬관절 전방 십자 인대의 반복 변형하에서의 역학적 거동에 관한 수치적 연구)

  • Ban, Yong;Choi, Deok-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1366-1374
    • /
    • 2009
  • Anterior cruciate ligament(ACL) of human body experiences a large deformation. May during everyday when large deformation is repeated by various activities such as outdoor activity, ACL easily get damaged. In order to acknowledge the effect of the cyclic large deformation to ACL, the constitutive equations for ACL are derived from experiment data. The concept of the objective stress rate plays a important role wherever large deformation occurs. In order to obtain the objective stress rates the eigenprojection technique is used. A comparison is made for four different cases: Jaumann rate, Green-Naghdi rate, logarithmic rate and twirl tensor of Eulerian triad rate for an isotropic material subject to cyclic deformation, such as simple shear motion. Four different materials are studied to compare the behavior of the materials for ACL using different objective rates. Finally, more complicated model with fibers for soft tissues is used to calculate the behavior subjected to cyclic large deformation.

Longitudinal Deformation Profile in Tunnel using Measured Data (계측자료를 이용한 터널의 종단변형도)

  • Jang, Won-Yil;Yang, Hyung-Sik;Chung, So-Keul
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.338-342
    • /
    • 2008
  • Longitudinal deformation profile(LDP) has been obtained mostly by numerical analysis. In this study, LDP was plotted by measured data from horizontal inclinometer and crown settlement. Deformation of foe ahead was determined by comparing to the maximum deformation point and deformation of after excavation was determined by regression of the measured crown settlement data. The result shows that crown deformation began as f3r as 3D ahead of the face. Crown settlement at the face was 40% of ultimate deformation, which was 10% higher than numerical results, and the deformation converged after excavation of 4D.