• Title/Summary/Keyword: Deformable image registration

Search Result 16, Processing Time 0.023 seconds

Evaluation of Dose Change by Using the Deformable Image Registration (DIR) on the Intensity Modulated Radiation Therapy (IMRT) with Glottis Cancer (성문암 세기조절 방사선치료에서 변형영상정합을 이용한 선량변화 평가)

  • Kim, Woo Chul;Min, Chul Kee;Lee, Suk;Choi, Sang Hyoun;Cho, Kwang Hwan;Jung, Jae Hong;Kim, Eun Seog;Yeo, Seung-Gu;Kwon, Soo-Il;Lee, Kil-Dong
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • The purpose of this study is to evaluate the variation of the dose which is delivered to the patients with glottis cancer under IMRT (intensity modulated radiation therapy) by using the 3D registration with CBCT (cone beam CT) images and the DIR (deformable image registration) techniques. The CBCT images which were obtained at a one-week interval were reconstructed by using B-spline algorithm in DIR system, and doses were recalculated based on the newly obtained CBCT images. The dose distributions to the tumor and the critical organs were compared with reference. For the change of volume depending on weight at 3 to 5 weeks, there was increased of 1.38~2.04 kg on average. For the body surface depending on weight, there was decreased of 2.1 mm. The dose with transmitted to the carotid since three weeks was increased compared be more than 8.76% planned, and the thyroid gland was decreased to 26.4%. For the physical evaluation factors of the tumor, PITV, TCI, rDHI, mDHI, and CN were decreased to 4.32%, 5.78%, 44.54%, 12.32%, and 7.11%, respectively. Moreover, $D_{max}$, $D_{mean}$, $V_{67.50}$, and $D_{95}$ for PTV were increased or decreased to 2.99%, 1.52%, 5.78%, and 11.94%, respectively. Although there was no change of volume depending on weight, the change of body types occurred, and IMRT with the narrow composure margin sensitively responded to such a changing. For the glottis IMRT, the patient's weight changes should be observed and recorded to evaluate the actual dose distribution by using the DIR techniques, and more the adaptive treatment planning during the treatment course is needed to deliver the accurate dose to the patients.

Nonrigid Lung Registration between End-Exhale and End-Inhale CT Scans Using a Demon Algorithm (데몬 알고리즘을 이용한 호기-흡기 CT 영상 비강체 폐 정합)

  • Yim, Ye-Ny;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • This paper proposes a deformable registration method using a demon algorithm for aligning the lungs between end-exhale and end-inhale CT scans. The lungs are globally aligned by affine transformation and locally deformed by a demon algorithm. The use of floating gradient force allows a fast convergence in the lung regions with a weak gradient of the reference image. The active-cell-based demon algorithm helps to accelerate the registration process and reduce the probability of deformation folding because it avoids unnecessary computation of the displacement for well-matched lung regions. The performance of the proposed method was evaluated through comparisons of methods that use a reference gradient force or a combined gradient force as well as methods with and without active cells. The results show that the proposed method can accurately register lungs with large deformations and can reduce the processing time considerably.

Analysis of Intrafractional Mass Variabilities Using Deformable Image Registration Program (영상변조 프로그램을 이용한 호흡 위상 간 종양의 움직임 특성 분석)

  • Cho, Jeong-Hee;Kim, Joo-Hoo;Seo, Sun-Youl;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.173-181
    • /
    • 2012
  • The aim of this study is to compare the geometric characteristics of the lung tumor, such as tumor centroid, HU change relative to breath phase, depending on tumor location and adhesion using 4DCT and deformable image registration program (MIMVista). The Y axis change was most significant and the mean Y axis centroid fluctuation was $7.32{\pm}6.88mm$ in lower lung tumor. The mean HU variation in lower lung mass has changed more than other locations, and its mean HU variation was $7.7{\pm}4.97%$ and non-adhered mass was more changed. Correlation for the mass volume between 3DCT and MIP was very high and its coefficient was 0.998. The effect of tumor location, adhesion and diaphragm excursion to geometric uncertainties was analyzed by linear regression model, it was influenced to mass deformation and geometrical variation so much except diaphragm excursion. but intra-fractional and inter-patient's uncertainties were great, so it couldn't find any exact deformation trend.

Dose Comparison Using Deformed Image Registration Method on Breast Cancer Radiotherapy (유방암 방사선치료에서 변형영상정합기법을 이용한 선량비교)

  • Won, Young Jin;Kim, Jong Won;Kim, Jung Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • The purpose of this study is to reconstruct the treatment plan by applying CBCT and DIR to dose changes according to the change of the patient's motion and breast shape in the large breast cancer patients and to compare the doses using TWF, FIF and IMRT. CT and CBCT were performed with MIM6 to create DIRCT and each treatment plan was made. The patient underwent computed tomography simulation in both prone and supine position. The homogeneity index (HI), conformity index (CI), coverage index (CVI) to the left breast as planning target volume (PTV) were determined and the doses to the lung, heart, and right breast as organ at risk (OAR) were compared by using dose-volume histogram and the unique property of each organ. The value of HI of the PTV breast increased in all treatment planning methods using DIRCT, and CVI and CI were decreased in the treatment planning methods using DIRCT.

Feasibility of Shrinking Field Radiation Therapy through 18F-FDG PET/CT after 40 Gy for Stage III Non-Small Cell Lung Cancers

  • Ding, Xiu-Ping;Zhang, Jian;Li, Bao-Sheng;Li, Hong-Sheng;Wang, Zhong-Tang;Yi, Yan;Sun, Hong-Fu;Wang, Dong-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.319-323
    • /
    • 2012
  • Objective: To explore the feasibility of shrinking field technique after 40 Gy radiation through 18F-FDG PET/CT during treatment for patients with stage III non-small cell lung cancer (NSCLC). Methods: In 66 consecutive patients with local-advanced NSCLC, 18F-FDG PET/CT scanning was performed prior to treatment and repeated after 40 Gy. Conventionally fractionated IMRT or CRT plans to a median total dose of 66Gy (range, 60-78Gy) were generated. The target volumes were delineated in composite images of CT and PET. Plan 1 was designed for 40 Gy to the initial planning target volume (PTV) with a subsequent 20-28 Gy-boost to the shrunken PTV. Plan 2 was delivering the same dose to the initial PTV without shrinking field. Accumulated doses of normal tissues were calculated using deformable image registration during the treatment course. Results: The median GTV and PTV reduction were 35% and 30% after 40 Gy treatment. Target volume reduction was correlated with chemotherapy and sex. In plan 2, delivering the same dose to the initial PTV could have only been achieved in 10 (15.2%) patients. Significant differences (p<0.05) were observed regarding doses to the lung, spinal cord, esophagus and heart. Conclusions: Radiotherapy adaptive to tumor shrinkage determined by repeated 18F-FDG PET/CT after 40 Gy during treatment course might be feasible to spare more normal tissues, and has the potential to allow dose escalation and increased local control.

Evaluating Correlation between Geometrical Relationship and Dose Difference Caused by Respiratory Motion Using Statistical Analysis

  • Shin, Dong-Seok;Kang, Seong-Hee;Kim, Dong-Su;Kim, Tae-Ho;Kim, Kyeong-Hyeon;Cho, Min-Seok;Noh, Yu-Yoon;Yoon, Do-Kun;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.203-212
    • /
    • 2016
  • Dose differences between three-dimensional (3D) and four-dimensional (4D) doses could be varied according to the geometrical relationship between a planning target volume (PTV) and an organ at risk (OAR). The purpose of this study is to evaluate the correlation between the overlap volume histogram (OVH), which quantitatively shows the geometrical relationship between the PTV and OAR, and the dose differences. 4D computed tomography (4DCT) images were acquired for 10 liver cancer patients. Internal target volume-based treatment planning was performed. A 3D dose was calculated on a reference phase (end-exhalation). A 4D dose was accumulated using deformation vector fields between the reference and other phase images of 4DCT from deformable image registration, and dose differences between the 3D and 4D doses were calculated. An OVH between the PTV and selected OAR (duodenum) was calculated and quantified on the basis of specific overlap volumes that corresponded to 10%, 20%, 30%, 40%, and 50% of the OAR volume overlapped with the expanded PTV. Statistical analysis was performed to verify the correlation with the OVH and dose difference for the OAR. The minimum mean dose difference was 0.50 Gy from case 3, and the maximum mean dose difference was 4.96 Gy from case 2. The calculated range of the correlation coefficients between the OVH and dose difference was from -0.720 to -0.712, and the R-square range for regression analysis was from 0.506 to 0.518 (p-value <0.05). However, when the 10% overlap volume was applied in the six cases that had OVH value ${\leq}2$, the average percent mean dose differences were $34.80{\pm}12.42%$. Cases with quantified OVH values of 2 or more had mean dose differences of $29.16{\pm}11.36%$. In conclusion, no significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value.