• Title/Summary/Keyword: Deforested land

Search Result 16, Processing Time 0.034 seconds

A Study on Forest Changes for A/R CDM in North Korea (A/R CDM을 위한 북한지역의 산림변화 연구)

  • Lee, Dong-Kun;Oh, Young-Chool;Kim, Jae-Uk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2007
  • A/R CDM(Afforestation/Reforestation Clean Development Mechanism) in Kyoto Mechanism means, either afforestation in the area used for other purposes more than 50 years or reforestation in the area used for other purposes on December 31st in 1989. South Korea has few sites due to the successful forestation in the past, but North Korea has not reforested the deforested lands since the mid-1970's. So these areas need to apply A/R CDM Project for restoration. The purposes of this study are to make a time series analysis in deforested areas and to estimate a feasibility of A/R CDM. To find the site satisfying A/R CDM business definition, land cover classification was applied using satellite images of the mid-1970's with good forestation, late 1980's including A/R CDM base year, and recent 2000's, and the chronological change was analyzed to categorize the possible sites. The North Korean topographical map of 1977 was used to verify land cover classification degree of 1970's, the land cover classification results made by the Ministry of Environment in 2000 were compared to verify the accuracy of 1980's results, and the land cover classification results in 2000's were verified by 2 site visits. The results of this study can be summarized as follows. The eligible A/R CDM sites are 605,156ha on the basis of the forestation change analysis in North Korea. Since the mid-1970's, 30.8% of the decreased forestation area of 1,966,306ha was classified into A/R CDM eligible sites. While other countries have the limited eligible sites, which has not been used for forestation since 1989 or which is being scattered, North Korea has large scale sites. Deforested sites are mainly around road and residential area, consequently give better accessibility for forestation than other countries. In conclusion, it is found that North Korea can provide efficient site for applying A/R COM Project to forestation restoring deforested land because of easy accessibility and existence of many possible sites due to artificial deforestation. Also, it is meaningful that the study suggests the application possibility of A/R COM Project to restore deforested land in North Korea and the related basic information through the chronological classification of the mid-1970's with good forestation, the late-1980's including A/R COM base year, and recent 2000's. It is expected that the study contributes to revitalization of A/R CDM Project and related research on North Korea forestation.

A Study on Detection of Deforested Land Using Aerial Photographs (항공사진을 이용한 훼손 산지 탐지 연구)

  • Ham, Bo Young;Lee, Chun Yong;Byun, Hye Kyung;Min, Byoung Keol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.11-17
    • /
    • 2013
  • With high social demands for the diverse utilizations of forest lands, the illegal forest land use changes have increased. We studied change detection technique to detect changes in forest land use using an object-oriented segmentation of RED bands differencing in multi-temporal aerial photographs. The new object-oriented segmentation method consists of the 5 steps, "Image Composite - Segmentation - Reshaping - Noise Remover - Change Detection". The method enabled extraction of deforested objects by selecting a suitable threshold to determine whether the objects was divided or merged, based on the relations between the objects, spectral characteristics and contextual information from multi-temporal aerial photographs. The results found that the object-oriented segmentation method detected 12% of changes in forest land use, with 96% of the average detection accuracy compared by visual interpretation. Therefore this research showed that the spatial data by the object-oriented segmentation method can be complementary to the one by a visual interpretation method, and proved the possibility of automatically detecting and extracting changes in forest land use from multi-temporal aerial photographs.

Terrace Fields Classification in North Korea Using MODIS Multi-temporal Image Data (MODIS 다중시기 영상을 이용한 북한 다락밭 분류)

  • Jeong, Seung Gyu;Park, Jonghoon;Park, Chong Hwa;Lee, Dong Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.73-83
    • /
    • 2016
  • Forest degradation reduces ecosystem services provided by forest and could lead to change in composition of species. In North Korea, there has been significant forest degradation due to conversion of forest into terrace fields for food production and cut-down of forest for fuel woods. This study analyzed the phenological changes in North Korea, in terms of vegetation and moisture in soil and vegetation, from March to Octorber 2013, using MODIS (MODerate resolution Imaging Spectroradiometer) images and indexes including NDVI (Normalized Difference Vegetation Index), NDSI (Normalized Difference Soil Index), and NDWI (Normalized Difference Water Index). In addition, marginal farmland was derived using elevation data. Lastly, degraded terrace fields of 16 degree was analyzed using NDVI, NDSI, and NDWI indexes, and marginal farmland characteristics with slope variable. The accuracy value of land cover classification, which shows the difference between the observation and analyzed value, was 84.9% and Kappa value was 0.82. The highest accuracy value was from agricultural (paddy, field) and forest area. Terrace fields were easily identified using slope data form agricultural field. Use of NDVI, NDSI, and NDWI is more effective in distinguishing deforested terrace field from agricultural area. NDVI only shows vegetation difference whereas NDSI classifies soil moisture values and NDWI classifies abandoned agricultural fields based on moisture values. The method used in this study allowed more effective identification of deforested terrace fields, which visually illustrates forest degradation problem in North Korea.

Deforestation Patterns Analysis of the Baekdudaegan Mountain Range (백두대간지역의 산림훼손경향 분석)

  • Lee, Dong-Kun;Song, Won-Kyong;Jeon, Seong-Woo;Sung, Hyun-Chan;Son, Dong-Yeob
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.4
    • /
    • pp.41-53
    • /
    • 2007
  • The Baekdudaegan Mountain Range is a backbone of the Korean Peninsula which carries special spiritual and sentimental signatures for Koreans as well as significant ecological values for diverse organisms. However, in spite of importance of this region, the forests of Baekdudaegan have been damaged in a variety of human activities by being used as highland vegetable grower, lumber region, grass land, and bare land, and are still undergoing destruction. The existing researches had determined the details of the damage through on-site and recent observations. Such methods cannot provide quantitative and integrated analysis therefore could not be utilized as objective data for the ecological conservation of Baekdudaegan forests. The goal of this study is to quantitatively analyze the forest damage in the Baekdudaegan preservation region through land cover categorization and change detection techniques by using satellite images, which are 1980s, and 1990s Landsat TM, and 2000s Landsat ETM+. The analysis was executed by detecting land cover changed areas from forest to others and analyzing changed areas' spatial patterns. Through the change detection analysis based on land cover classification, we found out that the deforested areas were approximately three times larger after the 1990s than from the 1980s to the 1990s. These areas were related to various topographical and spatial elements, altitude, slope, the distance form road, and water system, etc. This study has the significance as quantitative and integrated analysis about the Baekdudaegan preservation region since 1980s. These results could actually be utilized as basic data for forest conservation policies and the management of the Baekdudaegan preservation region.

Application of Vegetation Indices for Forest Degradation Using Landsat TM Data

  • Kim, Choen;Joung, Khang-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.192-197
    • /
    • 1998
  • This paper demonstrates that it is feasible to evaluate forest degradation and to detect deforestation in the 8156$km^2$ study area affected by expand farming using vegetation indices derived from Landsat TM data. The NDVI-growing stock relation was applied on th Landsat TM data and a 3 second grid DEM, whose coverages could improve the assessment of forest degradation and also estimate the rate of change of forest cover area depending on elevation intervals. The strength of the relationship between the ratio of the greenness and brightness indices and forest degradation conditions would have been more interesting in the deforested areas which were converted to crop farming land.

  • PDF

Change Analysis of Forest Area and Canopy Conditions in Kaesung, North Korea Using Landsat, SPOT and KOMPSAT Data

  • Lee, Kyu-Sung;Kim, Jeong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.327-338
    • /
    • 2000
  • The forest conditions of North Korea has been a great concern since it was known to be closely related to many environmental problems of the disastrous flooding, soil erosion, and food shortage. To assess the long-term changes of forest area as well as the canopy conditions, several sources of multitemporal satellite data were applied to the study area near Kaesung. KOMPSAT-1 EOC data were overlaid with 1981 topographic map showing the boundaries of forest to assess the deforestation area. Delineation of the cleared forest was performed by both visual interpretation and unsupervised classification. For analyzing the change of forest canopy condition, multiple scenes of Landsat and SPOT data were selected. After preprocessing of the multitemporal satellite data, such as image registration and normalization, the normalized difference vegetation index (NDVI) was derived as a representation of forest canopy conditions. Although the panchromatic EOC data had radiometric limitation to classify diverse cover types, they can be effectively used t detect and delineate the deforested area. The results showed that a large portion of forest land has been cleared for the urban and agricultural uses during the last twenty years. It was also found that the canopy condition of remaining forests has not been improved for the last twenty years. It was also found that the canopy condition of remaining forests has not been improved for the last twenty years. Possible causes of the deforestation and the temporal pattern of canopy conditions are discussed.

The Analysis of Changes in Forest Status and Deforestation of North Korea's DMZ Using RapidEye Satellite Imagery and Google Earth (RapidEye 위성영상과 구글 어스를 활용한 북한 DMZ의 산림현황 및 산림황폐지 변화 분석)

  • KWON, Sookyung;KIM, Eunhee;LIM, Joongbin;YANG, A-Ram
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.113-126
    • /
    • 2021
  • This study was conducted to analyze the forest status and deforestation area changes of the DMZ region in North Korea based on satellite images. Using growing and non-growing season's RapidEye satellite images, land cover of the North Korean DMZ was classified into stocking land(conifer, deciduous, mixed), deforested land(unstocked mountain, cultivated mountain, bare mountain), and non-forest areas. Deforestation rates in the Yeonan-baecheon, Beopdong-Pyeonggang, Heoyang-Geumgang and Tongcheon-Goseong district were calculated as 14.24%, 16.75%, 5.98%, and 16.63% respectively. Forest fire and land use change of forest were considered as the main causes of deforestation of DMZ. Changes in deforestation area were analyzed through Google Earth images. As a results, it was shown that the area of deforestation was on a decreasing trend. This study can be used as basic data for establishing inter-Korean border region's forest cooperation strategies by providing forest spatial information on the North Korea's DMZ.

Agroforestry Site-suitability Analysis in Suan-gun, Hwanghaebuk-do, North Korea (임농복합경영 대상지 적지 분석: 북한 황해북도 수안군을 중심으로)

  • Sookyung, Kwon;Soyoung, Park;Soonduck, Kwon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.667-675
    • /
    • 2022
  • Agroforestry is an ecological and economic land-use system that enables sustainable agriculture by combining forestry, agriculture, and livestock industries. North Korea chose agroforestry as a strategy for the restoration of sloping land and deforested land. Agroforestry was proposed for the inter-Korean forest cooperation subcommittee meeting and is currently highlighting carbon removal and promoting the '2050 Carbon Neutral Strategy' and 'Korea Peninsula Green Détente.' The study area, Suan-gun, Hwanghaebuk-do, is a constant deforestation monitoring area and a pilot site for management by the International Center for Research in Agroforestry. The requirements for agroforestry were analyzed through literature analysis. The agroforestry site-suitability map was visualized by applying GIS overlap analysis. Approximately 8,839 ha of sloping area was selected as suitable for agroforestry management, which is about 15% of Suan. We compared the map with Google Earth images and visually detected the land use status, such as agroforestry in Suan, to verify the results. As a future study, we will consider both natural-environment and socioeconomic factors and evaluate the relative importance of the factors to produce a high-accuracy agroforestry sitesuitability map at the national scale with the goal of producing basic data for the inter-Korea forest cooperation policy for long-term goals.

Land-Cover Change Detection of Western DMZ and Vicinity using Spectral Mixture Analysis of Landsat Imagery (선형분광혼합화소분석을 이용한 서부지역 DMZ의 토지피복 변화 탐지)

  • Kim, Sang-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.158-167
    • /
    • 2006
  • The object of this study is to detect of land-cover change in western DMZ and vicinity. This was performed as a basic study to construct a decision support system for the conservation or a sustainable development of the DMZ and Vicinity near future. DMZ is an is 4km wide and 250km long and it's one of the most highly fortified boundaries in the world and also a unique thin green line. Environmentalists want to declare the DMZ as a natural reserve and a biodiversity zone, but nowadays through the strengthening of the inter-Korean economic cooperation, some developers are trying to construct a new-town or an industrial complex inside of the DMZ. This study investigates the current environmental conditions, especially deforestation of the western DMZ adopting remote sensing and GIS techniques. The Land-covers were identified through the linear spectvral mixture analysis(LSMA) which was used to handle the spectral mixture problem of low spatial resolution imagery of Landsat TM and ETM+ imagery. To analyze quantitative and spatial change of vegetation-cover in western DMZ, GIS overlay method was used. In LSMA, to develop high-quality fraction images, three endmembers of green vegetation(GV), soil, water were driven from pure features in the imagery. Through 15 years, from 1987 to 2002, forest of western DMZ and vicinity was devastated and changed to urban, farmland or barren land. Northern part of western DMZ and vicinity was more deforested than that of southern part. ($52.37km^2$ of North Korean forest and $39.04km^2$ of South Korean were change to other land-covers.) In case of North Korean part, forest changed to barren land and farmland and in South Korean part, forest changed to farmland and urban area. Especially, In North Korean part of DMZ and vicinity, $56.15km^2$ of farmland changed to barren land through 15 years, which showed the failure of the 'Darakbat' (terrace filed) project which is one of food increase projects in North Korea.

  • PDF

An Economic Feasibility Study of AR CDM project in North Korea (북한 지역을 대상으로 한 조림 CDM 사업의 경제적 타당성 연구)

  • Han, Ki Joo;Youn, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.235-244
    • /
    • 2007
  • Potentials of AR CDM project in North Korea are assessed and feasible land area for AR CDM project is estimated. According to our estimation, There could be 515,000 hectares of forest lands deforested before 1990 in North Korea and 8,854 hectares at the regional level of Gae-sung City, which are eligible for AR CDM project, based on researches of satellite image analyses conducted from 1980's to 1990's. A baseline scenario assumed 44.73 tones of carbon stored in soil per hectare with no vegetation above ground remained during the project period following the default value of IPCC's Good Practice Guidance for LULUCF considering soil structure, climate and land use of the project area. The scenario also assumes that black rocust (Robinia pseudoacacia) is planted and the CDM project is implemented for 20 years. The costs for producing greenhouse gases CER (certified emission reduction) credits include costs of tree planting and forest management, and costs of project negotiation and transactions for issuing the credits. It is estimated that 376 tones of carbon dioxide per hectare can be accumulated and 503 temporary CER credits per hectare and 265 long-term CER credits per hectare could be produced during the project period. It is estimated to cost US$ 4.04 and US$ 7.67 to provide one unit of temporary credit and long-term credit, respectively. These values can be regarded as the cost of conferring emission commitment of a country or a private entity. However, it is not clear which option is better economically because the replacement periods are different in these two cases.