• Title/Summary/Keyword: Deflection ratio

Search Result 543, Processing Time 0.025 seconds

A Study on the Deflection of the Rectangular Plates with the Rectangular Rigid Body with respect to the Boundary Conditions (사각형 강체를 포함한 사각평판의 경계조건에 따른 처짐 연구)

  • 한근조;안찬우;김태형;심재준;한동섭;안성찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.172-177
    • /
    • 2003
  • This paper investigates the effect of reinforced plate on the deflection of the rectangular plate, when the rectangular plate is reinforced with rectangular rigid body at the centroid of the plate. For two boundary conditions such as simple supported and clamped boundary This study derives deflection formula of reinforced plates with three kinds of the aspect ratio of a rectangular plate with respect to the elastic modulus ratio and the length ratio of rigid body using the least square method. The results are as follows: 1. As the elastic modulus ratio r$_{e}$$\geq$ 1000, the maximum deflection with respect to the length ratio r$_{1}$ converges into constant value. 2. Deflection formula with respect to the length ratio r$_{1}$ is derived as the third order polynomial.l.

Stress Relaxation Properties of Cucumber under Bending Moment (휨 모멘트에 대한 오이의 응력이완(應力弛緩) 특성(特性))

  • Song, C.H.;Kim, M.S.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.262-269
    • /
    • 1993
  • Stress relaxation behaviors of the cucumber under bending moment were tested with UTM at three levels of loading rate and initial deflection ratio. Sample cucumber was selected from three cultivars of cucumber, Cheongjangmadi, Baekdadagi, and Gyeousalicheongjang, because these cultivars are the most popular grown cultivars in Korea. When the bending moment was applied to the cucumber sample, the effective span between simple supports was held a constant value of 116mm with consideration of the selected sample length. The objectives of this study were to develop the rheological models such as linear and nonlinear models of the stress relaxation for the cucumber samples, and to investigate the effects of loading rate and initial deflection ratio on the stress relaxation behavior of the cucumber. The results of this study may be summarized as follows : 1. Stress relaxation behavior of the cucumber could be well described by the generalized Maxwell model for each level of deflection ratio. But the stress relaxation behavior of the sample was found to be initial deflection ratio and time dependent, and it was represented the nonlinear viscoelastic model as a function of initial deflection ratio and time. 2. Stress relaxation behavior of the cucumber samples was very highly affected by the loading rate and the initial deflection ratio. The more loading rate and initial deflection ratio resulted in the more initial bending stress and after stress relaxation progressed more rapidly. 3. At the same test conditions, it was found that the stress relaxation rate of Cheongjangmadi was faster than that of other cultivars.

  • PDF

The Study on the improvement of dynamic characteristics with multi-orifice in airspring (멀티 오리피스를 이용한 에어스프링 동특성 개선에 관한 연구)

  • 김인수;황성호;한문성;고철수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.97-103
    • /
    • 2002
  • Vibration isolation technology using an air spring and laminated rubber bearing is widely used because it has excellent vibration isolation characteristics. In the part of that, we usually make use of the self-damped air suing. It is occupied two chambers, restrictor, diaphragm and load plate. Two chambers contain compressed air and the volume of chambers and the area of load plate give a definition of stiffness and load. The restrictor and the volume ratio of two chambers give a definition of damping ratio. The conventional model of restrictor is made of one orifice and it causes turbulent flow in the orifice at the region of large deflection. The stillness of air suing is larger and the damping is lower in the region of large deflection. In the multi-orifice case, the stiffness is similar to air spring with one orifice but damping ratio is larger than conventional air spring. And damping ratio is smaller than conventional air suing in small deflection region. Deflection is small in the region of high frequency so small damping is better than large damping. As a result, we can reduce the storage stiffness of air suing in the wide region of deflection and increase the damping ratio in the region of large deflection. After this, we will try to and the relation of Reynolds Number and Flow Resistance then we are going to make another restrictor for air spring to improve damping ratio and stiffness.

  • PDF

A Case Study of Flexible Sewer Pipes Behaviors - Compaction Ratio·Inner Deflection Ratiov·Ring Stiffness - (현장중심형 하수도용 연성관의 거동특성에 대한 고찰 - 다짐도·변형률·강성 간의 관계정립 -)

  • Kim, Young-Jin
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.31-38
    • /
    • 2013
  • As the Sewer Pipe is transformed by the expansion of life cycle as a result of the technology development, flexible pipe is developed by the transformed environmental conditions. To change pipe design, three phases(compaction ration - inner deflection ratio - ring stiffness) should be considered in design conditions. The input data of pipe design were provided by compaction-inner deflection ratio-ring stiffness. M oreover, The guidelines of sewerage pipes should be considered by flexible pipes design criteria.

The Study on the Deflection of the Rectangular Plates including the rectangular rigid body with respect to the boundary conditions (사각형 강체를 포함한 사각평판의 경계조건에 따른 처짐 연구)

  • 한동섭;심재준;김태형;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.869-872
    • /
    • 2002
  • This paper deals with the effect of reinforced plate on the deflection of the rectangular plate, when the rectangular plate is reinforced with rectangular rigid body at the centroid of the plate. For Two boundary conditions such as simple supported and clamped boundary, this study derives deflection formula of reinforced plates with respect to the stiffness ratio and the length ratio of rigid body using the least square method. The results are as follows: 1. As $r_e$ $\geq$ 1000, the maximum deflection with respect to $r_e$ converges into constant value. 2. Deflection formula with respect to $r_e$ is derived as the fifth order polynomial.

  • PDF

Limit Span/Depth Ratio for Indirect Deflection Control in Reinforced Concrete Flexural Members (철근콘크리트 휨부재의 처짐 간접제어를 위한 한계 지간/깊이-비 연구)

  • Choi, Seung-Won;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.35-41
    • /
    • 2011
  • In concrete structural design provisons, two methods are normally provided to control deflection; direct method and indirect method. It is more efficient to use the indirect deflection control by which the span/depth ratio is limited not to exceed an allowable deflection limit. Because actual deflections are affected by many causes, it is complicated to evaluate actual deflections. In this study, limit span/depth ratios are derived from the deflection calculated directly at the serviceability limit state in RC members. The deflection is obtained from using average curvature, which depends on materials model used. The main variables examined are tension stiffening effect, concrete strength, cross section size and compressive steel ratio. It could be appeared that more analytical consistency is secured to use the 2nd order form of tension stiffening effect. And the limit span/depth ratio is dependent on material strength, tensile and compressive steel ratio but it is independent on cross-section size.

Long-term Deflection of R/C Beam with Variable Substitution Ratio of Recycled Aggregate (순환골재 치환율에 따른 R/C보의 장기처짐에 관한 연구)

  • Yoon, Seung-Joe;Seo, Soo-Yeon;Lee, Woo- Jin;Kang, Seong-Duk;Kim, Dae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.37-40
    • /
    • 2006
  • In this paper, long term deflection of RC beam with variable substitution ratio of recycled aggregate is investigated. 6 RC beam specimens are designed using concrete made of coarse aggregate of 25mm size, mix strength of 21MPa, slump of 12cm and air content of $5.0{\pm}1.5%$. A few concrete blocks are made and used for long term loading. The loading and deflection instrumentation are conducted following the process codified in ACI 318-05 code. Test result shows that the deflection of specimens depends on the compressive strength of concrete. And it is concluded that the deflection of RC beam can be predicted like normal beam using ACI formula if certain level of compressive strength is acquired even recycled aggregate is used in making the beam.

  • PDF

The elastic deflection and ultimate bearing capacity of cracked eccentric thin-walled columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.401-411
    • /
    • 2005
  • The influence of cracks on the elastic deflection and ultimate bearing capacity of eccentric thin-walled columns with both ends pinned was studied in this paper. First, a method was developed and applied to determine the elastic deflection of the eccentric thin-walled columns containing some model-I cracks. A trigonometric series solution of the elastic deflection equation was obtained by the Rayleigh-Ritz energy method. Compared with the solution presented in Okamura (1981), this solution meets the needs of compatibility of deformation and is useful for thin-walled columns. Second, a two-criteria approach to determine the stability factor ${\varphi}$ has been suggested and its analytical formula has been derived. Finally, as an example, box columns with a center through-wall crack were analyzed and calculated. The effects of cracks on both the maximum deflection and the stability coefficient ${\varphi}$ for various crack lengths or eccentricities were illustrated and discussed. The analytical and numerical results of tests on the columns show that the deflection increment caused by the cracks increases with increased crack length or eccentricity, and the critical transition crack length from yielding failure to fracture failure ${\xi}_c$ is found to decrease with an increase of the slenderness ratio or eccentricity.

Free Vibrations of Tapered Beams with Static Deflection due to Self-Weight (자중에 의한 정적 처짐을 고려한 변단면 보의 자유진동)

  • 이병구;이태은;안대순;김영일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.423-428
    • /
    • 2002
  • A numerical method is presented to obtain natural frequencies and mode shapes of tapered beams with static deflections due to self-weight. The differential equation governing the free vibrations of beam taken into account the static deflection due to self-weight is derived and solved numerically. The hinged-hinged, clamped-clamped and clamped-hinged and clamped-free end constraints are applied in the numerical examples. As the numerical results, the lowest three natural frequencies versus distributed slenderness ratio and section ratio are reported in figures. And for the comparison purpose, the typical mode shapes with the effects of static deflection are presented in figures.

  • PDF