• Title/Summary/Keyword: Deficit Model

Search Result 278, Processing Time 0.026 seconds

Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice

  • Jeon, Se Jin;Kim, Boseong;Ryu, Byeol;Kim, Eunji;Lee, Sunhee;Jang, Dae Sik;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.249-258
    • /
    • 2017
  • To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-${\zeta}$ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-${\zeta}$ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems.

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

Relationship between gross primary production and environmental variables during drought season in South Korea (가뭄 기간 총일차생산량과 환경 변수 간 상관관계 분석)

  • Park, Jongmin;Lee, Dalgeun;Park, Jinyi;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.779-793
    • /
    • 2021
  • Water stress and environmental drivers are important factors to explain the variance of gross primary production (GPP). Environmental drivers are used to generate GPP in Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm and process-based model. However, MODIS algorithm only consider the vapor pressure deficit (VPD) data while the process-based biogeochemical model also uses limited data to express water stress. We compared the relationship between environmental drivers and GPP from eddy covariance method, MODIS algorithm, and Community Land Model 4 (CLM 4) simulation in normal years and drought years. To consider water stress specifically, we used VPD and evaporative fraction (EF). We evaluated the effects from environmental drivers and EF towards GPP products using the structural equation modeling (SEM) in South Korea. We found that GPP products from MODIS algorithm and model simulation results were not restricted from VPD data if VPD was underestimated. We also found that in the cropland area, irrigation effects can relieve VPD effects to GPP. However, GPP products derived from MODIS and CLM 4 had limitation to explain the irrigation effects to GPP. Overall, these results will enhance the understanding of GPP products derived from MODIS and CLM 4.

The Estimation of Soil Moisture Index by SWAT Model and Drought Monitoring (SWAT 모형을 이용한 토양수분지수 산정과 가뭄감시)

  • Hwang, Tae Ha;Kim, Byung Sik;Kim, Hung Soo;Seoh, Byung Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.345-354
    • /
    • 2006
  • Drought brings on long term damage in contrast to flood, on economic loss in the region, and on ecologic and environmental disruptions. Drought is one of major natural disasters and gives a painful hardship to human beings. So we have tried to quantify the droughts for reducing drought damage and developed the drought indices for drought monitoring and management. The Palmer's drought severity index (PDSI) is widely used for the drought monitoring but it has the disadvanges and limitations in that the PDSI is estimated by considering just climate conditions as pointed out by many researchers. Thus this study uses the SWAT model which can consider soil conditions like soil type and land use in addition to climate conditions. We estimate soil water (SW) and soil moisture index (SMI) by SWAT which is a long term runoff simulation model. We apply the SWAT model to Soyang dam watershed for SMI estimation and compare SMI with PDSI for drought analysis. Say, we calibrate and validate the SWAT model by daily inflows of Soyang dam site and we estimate long term daily soil water. The estimated soil water is used for the computation of SMI based on the soil moisture deficit and we compare SMI with PDSI. As the results, we obtained the determination coefficient of 0.651 which means the SWAT model is applicable for drought monitoring and we can monitor drought in more high resolution by using GIS. So, we suggest that SMI based on the soil moisture deficit can be used for the drought monitoring and management.

Optimal Conjunctive Use of Surface and Ground Water (지표수와 지하수의 최적 연계운영)

  • Yi, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.367-374
    • /
    • 2002
  • Water supply plan by optimal conjunctive use of surface and ground water is studied to prepare expected water deficit in near future. The optimization model for conjunctive use of surface and ground water is developed using discrete differential dynamic programming technique to maximize net benefit by water supply. As a result of applying the model to Namdaechun river located in Yangyang, it is found that water supply reliability using optimal conjunctive use of surface and ground water is much higher than reliability using surface water alone.

Numerical study on the oblique shock wave/vortex interaction (경사충격파와 와류 상호작용에 대한 수치적 연구)

  • Mun, Seong-Mok;Kim, Jong-Am;No, O-Hyeon
    • 한국항공운항학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.240-246
    • /
    • 2004
  • For the prediction on the onset of oblique shock wave-induced vortex breakdown, computational studies on the Oblique Shock wave/Vortex Interaction (OSVI) are conducted and compared with both experimental results and analytic model. A Shock-stable numerical scheme, the Roe scheme with Mach number-based function (RoeM), and a two-equation eddy viscosity-transport approach are used for three-dimensional turbulent flow computations. The computational configuration is identical to available experiment, and we attempt to ascertain the effect of parameters such as a vertex strength, streamwise velocity deficit, and shock strength at a freestream Mach number of 2.49. Numerical simulations using the ${\kappa}-{\omega}SST$ turbulence model and suitably modeled vortex profiles are able to accurately reproduce many fine features through a direct comparison with experimental observations. The present computational approach to determine the criterion on the onset of oblique shock wave-induced vortex breakdown is found to be in good agreement with both the experimental result and the analytic prediction.

  • PDF

A Study on New Power Business Model Using Power Information Technology

  • Bae, Sung-Hwan;Kim, Ja-Hee;Lim, Han-Seung
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.379-388
    • /
    • 2010
  • The Korea Electric Power Corporation (KEPCO) recorded 2.9 trillion won deficit in the aftermath of the world financial crisis. KEPCO is trying to escape from the business crisis in every way; however, it is impossible to make huge profit by selling electricity alone. Overseas electrical utilities make profits by selling gas and heat along with electricity. However, it is difficult for KEPCO to enter the gas and the heat selling market because other public companies are already dealing with them. In this situation, improving the business is possible when KEPCO develops a new business model and creates added value using Korean advanced Power IT combined with electricity. This study shows a new business model using Power IT, based on a survey targeting managers in KEPCO branch office and electrical engineers in the field. We hope the new business model suggested in this study is adapted to the real field to create high value in the future.

Optimum Water Allocation System Model in Keumho River Basin with Mathematical Programming Techniques (수리계획을 이용한 금호강유역의 최적 물배분 시스템모델)

  • 안승섭;이증석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.74-85
    • /
    • 1997
  • This study aims at the development of a mathematical approach for the optimal water allocation in the river basin where available water is not in sufficient. Its optimal allocation model is determined from the comparison and analysis of mathematical programming techniques such as transportation programming and dynamic programming models at its optimal allocation models. The water allocation system used in this study is designed to be the optimal water allocation which can satisfy the water deficit in each district through inter-basin water transfer between Kumho river basin which is a tributary catchment of Nakdong river basin, and the adjacent Hyungsan river basin, Milyang river basin and Nakdong upstream river basin. A general rule of water allocation is obtained for each district in the basins as the result of analysis of the optimal water allocation in the water allocation system. Also a comparison of the developed models proves that there is no big difference between the models Therefore transportation programming model indicates most adequate to the complex water allocation system in terms of its characteristics It can be seen, however, that dynamic programming model shows water allocation effect which produces greater net benefit more or less.

  • PDF

Biomechanical Model of Hand to Predict Muscle Force and Joint Force (근력과 관절력 예측을 위한 손의 생체역학 모델)

  • Kim, Kyung-Soo;Kim, Yoon-Hyuk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • Recently, importance of the rehabilitation of hand pathologies as well as the development of high-technology hand robot has been increased. The biomechanical model of hand is indispensable due to the difficulty of direct measurement of muscle forces and joint forces in hands. In this study, a three-dimensional biomechanical model of four fingers including three joints and ten muscles in each finger was developed and a mathematical relationship between neural commands and finger forces which represents the enslaving effect and the force deficit effect was proposed. When pressing a plate under the flexed posture, the muscle forces and the joint forces were predicted by the optimization technique. The results showed that the major activated muscles were flexion muscles (flexor digitorum profundus, radial interosseous, and ulnar interosseous). In addition, it was found that the antagonistic muscles were also activated rather than the previous models, which is more realistic phenomenon. The present model has considered the interaction among fingers, thus can be more powerful while developing a robot hand that can totally control the multiple fingers like human.

Firm Characteristics and Cash Holdings Speed of Adjustment: Evidence from Vietnam

  • TRUONG, Khiem Dieu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.137-148
    • /
    • 2021
  • The study investigates the existence of an optimal level of cash and the firm characteristics influencing the decision to hold cash, and the adjusting speed of the cash holdings to the target level. It highlights the heterogeneity of cash adjustment speed in the Vietnam market. The research employs the 417 samples of Vietnamese non - financial listed firms in the period of 2010 to 2019. The study uses the Pool OLS model, Fixed effect model (FEM), Random effect model (REM), and GMM model. According to the research findings, there is an optimal amount of cash at which the firm's value is maximized in Vietnamese listed firms, and the majority of the firms in the sample retain cash over the target level. Furthermore, the study demonstrates that firms actively modify their cash holdings to the optimal level with an adjustment speed of less than one owing to adjustment cost constraints. This speed varies between groupings of enterprises with different characteristics, underlining the heterogeneity of the adjustment speed even more. Small deviation firms adjust more rapidly than large deviation firms. Large free cash flow (FCF) firms adjust more readily than small FCF firms, and fiscal deficit firms modify more rapidly than firms with a financial surplus.