• Title/Summary/Keyword: Deferiprone

Search Result 2, Processing Time 0.016 seconds

Chelation of Thallium (III) in Rats Using Combined Deferasirox and Deferiprone Therapy

  • Salehi, Samie;Saljooghi, Amir Sh.;Badiee, Somayeh;Moqadam, Mojtaba Mashmool
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.299-304
    • /
    • 2017
  • Thallium and its compounds are a class of highly toxic chemicals that cause wide-ranging symptoms such as gastrointestinal disturbances; polyneuritis; encephalopathy; tachycardia; skin eruptions; hepatic, renal, cardiac, and neurological toxicities; and have mutagenic and genotoxic effects. The present research aimed to evaluate the efficacy of the chelating agents deferasirox (DFX) and deferiprone (L1) in reducing serum and tissue thallium levels after the administration of thallium (III), according to two different dosing regimens, to several groups of Wistar rats for 60 days. It was hypothesized that the two chelators might be more efficient as a combined therapy than as monotherapies in removing thallium (III) from the rats' organs. The chelators were administered orally as either single or combined therapies for a period of 14 days. Serum and tissue thallium (III) and iron concentrations were determined by flame atomic absorption spectroscopy. Serum and tissue thallium (III) levels were significantly reduced by combined therapy with DFX and L1. Additionally, iron concentrations returned to normal levels and symptoms of toxicity decreased.

Particulate matter induces ferroptosis by accumulating iron and dysregulating the antioxidant system

  • Minkyung Park;Young-Lai Cho;Yumin Choi;Jeong-Ki Min;Young-Jun Park;Sung-Jin Yoon;Dae-Soo Kim;Mi-Young Son;Su Wol Chung;Heedoo Lee;Seon-Jin Lee
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.96-101
    • /
    • 2023
  • Particulate matter is an air pollutant composed of various components, and has adverse effects on the human body. Particulate matter is known to induce cell death by generating an imbalance in the antioxidant system; however, the underlying mechanism has not been elucidated. In the present study, we demonstrated the cytotoxic effects of the size and composition of particulate matter on small intestine cells. We found that particulate matter 2.5 (PM2.5) with extraction ion (EI) components (PM2.5 EI), is more cytotoxic than PM containing only polycyclic aromatic hydrocarbons (PAHs). Additionally, PM-induced cell death is characteristic of ferroptosis, and includes iron accumulation, lipid peroxidation, and reactive oxygen species (ROS) generation. Furthermore, ferroptosis inhibitor as liproxstatin-1 and iron-chelator as deferiprone attenuated cell mortality, lipid peroxidation, iron accumulation, and ROS production after PM2.5 EI treatment in human small intestinal cells. These results suggest that PM2.5 EI may increase ferroptotic-cell death by iron accumulation and ROS generation, and offer a potential therapeutic clue for inflammatory bowel diseases in human small intestinal cells.