• Title/Summary/Keyword: Defense mechanism

Search Result 581, Processing Time 0.024 seconds

Realtime Wideband SW DDC Using High-Speed Parallel Processing (고속 병렬처리 기법을 활용한 실시간 광대역 소프트웨어 DDC)

  • Lee, Hyeon-Hwi;Lee, Kwang-Yong;Yun, Sangbom;Park, Yeongil;Kim, Seongyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1135-1141
    • /
    • 2014
  • Performing wideband DDC while quantizing signal over a wide dynamic range and high speed sampling rate have primarily been implemented in a hardware such as, FPGA or ASIC because of time-consuming job. Real-time wideband DDC SW, even though signal environment changes, adapt to signal environment flexibly and can be reused. In addition, it has a lower price than the hardware implementation. In this paper, we study the system design that can be stored in real time designing a high-speed parallel processing architecture for SW-based wideband DDC. Finally, applying a Ping-Pong Buffering mechanism for receiving a signal in real time and CUDA for a high-speed signal processing, we verify wideband DDC design procedure that meets the signal processing.

Fatigue Crack Growth Behavior of Powder Metallurgical Nickel-based Superalloy using DCPD Method at Elevated Temperature (DCPD법을 이용한 분말야금 니켈기 초내열합금의 고온 피로균열진전거동)

  • Na, Seonghyeon;Oh, Kwangkeun;Kim, Hongkyu;Kim, Donghoon;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.11-17
    • /
    • 2016
  • Powder metallurgy nickel based superalloy has been used in a high temperature part of turbine engine for airplane. The fatigue crack growth behavior was investigated using CT specimens for the materials at room temperature(R.T.), $600^{\circ}C$ and $700^{\circ}C$. The direct current potential drop(DCPD) method suggested by ASTM E647 was used to measure the crack length during fatigue crack growth at various stress ratios. The fatigue crack growth rate at R=0.5 was faster than that at R=0.1 for all temperature conditions and increased with the increase of stress ratio and temperature. Fractography was conducted for analysis of fracture mechanism.

Aerodynamic Design of a Canard Controlled 2D Course Correction Fuze for Smart Munition (카나드 기반의 지능탄 조종 장치 공력설계)

  • Park, Ji-Hwan;Bae, Ju-Hyeon;Song, Min-Sup;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • Course correction munition is a smart projectile which improves its accuracy by the control mechanism equipped in the fuze section with canard. In this paper, various aerodynamic configurations of the fuze section were analysed by utilizing a semi-empirical method and a CFD method. A final canard configuration showing the least drag was then determined. During the CFD simulation, it was found that the k-${\omega}$ SST turbulence model combined with O-type grid base is suitable for the prediction of the base drag. Finally, the aerodynamic characteristics of the smart munition and the change of drag due to the canard installation were analysed.

Development of an Explosive Bolt for Sled Test Application (슬레드 시험용 폭발볼트 개발)

  • Lee, Juho;An, Woo-Jin;Kim, Yong-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.269-275
    • /
    • 2020
  • An explosive bolt is one of many representative pyrotechnic release devices that separates two joined structures using explosives inside the bolt. In this study, a 1/2 inch ridge-cut explosive bolt with an EBW detonator was developed for usage in sled tests. The initial shape design was carried out based on the design method, and the performance test showed that the separation performance was outstanding but fragments occurred. Therefore, numerical analysis was performed to reduce the amount of debris by minimizing the amount of explosives. From the numerical analysis, the separation mechanism and characteristics of the ridge-cut explosive bolts were identified, and the minimum amount of explosives that does not generate debris was proposed. Verification tests revealed that the ridge-cut explosive bolts with the proposed explosive weight minimized fragments while maintaining the separation performance.

Development of Mathematical Model to Predict Specific Wear Rates of Graphite Seal (흑연 씰의 비마모율 예측에 관한 수학적 모델 개발)

  • Kim, Yeonwook;Kim, Jaehoon;Park, Sunghan;Lee, Hwangyu;Kim, Beomkeun;Lee, Seongbeom;Kwak, Jae Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.67-73
    • /
    • 2014
  • The dry sliding wear behavior of graphite that is used as the sealing material to cut off hot gas was evaluated as a function of applied load, sliding speed and temperature. The reciprocating wear tests were carried out at room temperature and elevated temperatures. An attempt has been made to develop a mathematical model by response surface methodology and an analysis of variance technique was applied to confirm the validity of the developed model. Also, the wear mechanism was compared through the observation of the worn surface by SEM analysis.

A Study of Wear Behavior for Sealing Graphite at Elevated Temperature (씰링 그라파이트의 고온 마모 거동에 관한 연구)

  • Kim, Yeonwook;Kim, Jaehoon;Yang, Hoyoung;Park, Sunghan;Lee, Hwankyu;Kim, Bumkeun;Lee, Seungbum;Kwak, Jaesu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • Graphite is commonly used as a solid lubricant leading to low friction coefficient and abrasion. In this study, wear behavior of sealing graphite(HK-6) at elevated temperature was evaluated. Reciprocating wear test was carried out as wear occurred graphite as a seal(HK-6) is positioned between the liner and driving shaft. Variables which are temperature, sliding speed and contact load are set. This study suggest optimized environment conditions through the wear properties of graphite.

Numerical Modeling and Experimental Verification for Target Strength of Submerged Objects (수중물체에 대한 음향 표적강도의 수치해석과 실험적 검증)

  • CHOI YOUNG-HO;SHIN KEE-CHUL;YOU JIN-SU;KIM JEA-SOO;JOO WON-HO;KIM YOUNG-HYUN;PARK JONG-HYUN;CHOI SANG-MUN;KIM WOO-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.64-70
    • /
    • 2005
  • Target Strength(TS) is an important factor for the detection of the target in an active sonar system: thus the numerical model for the prediction of TS is widely being developed. For the frequency range of several kHz, the most important scattering mechanism is known to be specular reflection, which is largely affected by the geometrical shape of the target. In this paper, a numerical algorithm to predict TS is developed based on the Kirchhoff approximation which is computationally efficient. The developed algorithm is applied to the canonical targets of simple shapes, for which the analytical solutions exist. The numerical results show good agreement with the analytical solutions. Also, the algorithm is applied to more complex scatterers, and is compared with the experimental data obtained in the water tank experiment for the purpose of verifying the developed numerical model. Discussions on the effect of spatial sampling and other aspects of numerical m odeling are presented.

Proteomics of plant-fungal pathogen interaction: an overview (식물과 곰팡이 병원균과의 상호작용에 대한 프로테오믹스 최근 연구 동향)

  • Kim, Jin Yeong;Lee, So Eui;Oh, Ha Ram;Choi, In Soo;Kim, Yong Chul;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • So far it has been generally considered that proteomic approaches are very useful for studying plant-microbes interaction. In this review, recent studies based on papers published from 2010 to 2013 have investigated proteomics analysis in various interaction during plant-fungal pathogen infection by means of gel-based proteomics coupled with mass spectrometry (MS)-based analysis. In rice, three papers focused on rice-Magnaporthe oryzae interaction were mainly reviewed in this study. Interestingly, another study showed proteomic changes in rice inoculated with Puccinia triticina, which is not only an fungal pathogen in wheat and but also results to the disease resistance with non-host defense manner in rice. Additionally, proteomics analysis has been widely subjected to understand defense mechanism during other crops (wheat, tomato, strawberry and mint) and their fungal pathogen interaction. Crops inoculated are analyzed to identify differentially regulated proteins at various tissues such as leaf and apoplast using 2-DE analysis coupled with various MS approaches such as MALDI-TOF MS, nESI-LC-MS/MS and MudPIT, respectively. Taken together, this review article shows that proteomics is applicable to various organisms to understand plant-fungal pathogen interaction and will contribute to provide important information for crop disease diagnosis and crop protection.

Protection of Metal Stress in Saccharomyces cerevisiae: Cadmium Tolerance Requies the Presence if Two ATP-Binding Domains of Hsp 104 Protein

  • Lee, Gyeong Hui;Eom, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.514-518
    • /
    • 2001
  • We have explored the importance of two ATP binding domains of Hsp104 protein in protection of yeast cells from cadmium exposure. In the previous study we have discovered that the presence of two ATP binding sites was essential in providing heat sh ock protection as well as rescuing cells from oxidative stress. In this paper we first report wild type cell with functional hsp104 gene is more resistant to cadmium stress than hsp104-deleted mutant cell, judging from decrease in survival rates as a result of cadmium exposure. In order to demonstrate functional role of two ATP binding sites in cadmium defense, we have transformed both wild type (SP1) and hyperactivated ras mutant (IR2.5) strains with several plasmids differing in the presence of ATP binding sites. When an extra copy of functional hsp104 gene with both ATP binding sites was overexpressed with GPD-promoter, cells showed increased survival rate against cadmium stress than mutants with ATP binding sites changed. The degree of protection in the presence of two ATP binding sites was similarly observed in ira2-deleted hyperactivated ras mutant, which was more sensitive to oxidative stress than wild type cell. We have concluded that the greater sensitivity to cadmium stress in the absence of two ATP binding sites is attributed to the higher concentration of reactive oxygen species (ROS) produced by cadmium exposure based on the fluorescence tests. These findings, taken all together, imply that the mechanism by which cadmium put forth toxic effects may be closely associated with the oxidative stress, which is regulated independently of the Ras-cAMP pathway. Our study provides a better understanding of cadmium defense itself and cross-talks between oxidative stress and metal stress, which can be applied to control human diseases due to similar toxic environments.

Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives

  • Ray, Sujit Kumar;Macoy, Donah Mary;Kim, Woe-Yeon;Lee, Sang Yeol;Kim, Min Gab
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.503-511
    • /
    • 2019
  • As sessile organisms, plants have developed sophisticated system to defend themselves against microbial attack. Since plants do not have specialized immune cells, all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. The plant innate immune system has two major branches: PAMPs (pathogen associated molecular patterns)-triggered immunity (PTI) and effector-triggered immunity (ETI). The ability to discriminate between self and non-self is a fundamental feature of living organisms, and it is a prerequisite for the activation of plant defenses specific to microbial infection. Arabidopsis cells express receptors that detect extracellular molecules or structures of the microbes, which are called collectively PAMPs and activate PTI. However, nucleotidebinding site leucine-rich repeats (NB-LRR) proteins mediated ETI is induced by direct or indirect recognition of effector molecules encoded by avr genes. In Arabidopsis, plasmamembrane localized multifunctional protein RIN4 (RPM1-interacting protein 4) plays important role in both PTI and ETI. Previous studies have suggested that RIN4 functions as a negative regulator of PTI. In addition, many different bacterial effector proteins modify RIN4 to destabilize plant immunity and several NB-LRR proteins, including RPM1 (resistance to Pseudomonas syringae pv. maculicola 1), RPS2 (resistance to P. syringae 2) guard RIN4. This review summarizes the current studies that have described signaling mechanism of RIN4 function, modification of RIN4 by bacterial effectors and different interacting partner of RIN4 in defense related pathway. In addition, the emerging role of the RIN4 in plant physiology and intercellular signaling as it presents in exosomes will be discussed.