• Title/Summary/Keyword: Defense Model

Search Result 1,792, Processing Time 0.031 seconds

A Study on Evaluation of Combat Effectiveness in WMA-EA based on C2 Model (C2모델 기반 전장아키텍처의 전투효과 평가방안)

  • Park, Yang-Soo;Jung, Chan-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.619-626
    • /
    • 2010
  • ROK Joint Chiefs of Staff in developing an WMA-EA(Warfighting Mission Area-Enterprise Architecture) tries to create the practical buildup requirements of military power through precise requirements and operational capabilities based on the architectures. However, it is difficult to verify the effectiveness of target architectures and do efficient requirement planning because we cannot know the gap of quantitative combat effectiveness between current and target WMA-EAs. This study presents an evaluation method of combat effectiveness and focuses on combat's positive effects in WMA-EAs. The method proposed is based on C2 model which is appropriate for the evaluation of combat effectiveness in architectures. We verify the effectiveness of the proposed method through a case study of an anti-ship warfare architecture.

Similarity Analysis of Geospatial Height data in Forest Area by the Comparison of the Detection Probability (탐지확률 비교에 의한 산림지역 지형고도자료의 유사성 분석)

  • Song, Hyeon-Seung;Eo, Yang-Dam
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.516-518
    • /
    • 2012
  • 일반적으로 표적에 대한 탐지는 감시장비의 성능과 지형지물의 차폐 여부가 가장 큰 영향을 준다. 본 연구는 SRTM DSM (Digital Surface Model)과 국방지형정보단 DEM (Digital Elevation Model) 그리고 여기에 수목고를 고려한 DCM (Digital Canopy Model)고도를 기반으로 탐지확률 실험을 하였다. 실험결과 DCM과 DEM 기반의 탐지확률 결과가 가장 유사성이 높았고, SRTM과 DEM 기반의 탐지 확률은 차이가 나는 것으로 확인하였다. 따라서 SRTM이 이론적으로 DSM으로 고려되지만, 향후 추가적인 연구를 통해 이에 대한 분석이 더 필요할 것으로 사료된다.

Development of Machine Learning Ensemble Model using Artificial Intelligence (인공지능을 활용한 기계학습 앙상블 모델 개발)

  • Lee, K.W.;Won, Y.J.;Song, Y.B.;Cho, K.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.211-217
    • /
    • 2021
  • To predict mechanical properties of secondary hardening martensitic steels, a machine learning ensemble model was established. Based on ANN(Artificial Neural Network) architecture, some kinds of methods was considered to optimize the model. In particular, interaction features, which can reflect interactions between chemical compositions and processing conditions of real alloy system, was considered by means of feature engineering, and then K-Fold cross validation coupled with bagging ensemble were investigated to reduce R2_score and a factor indicating average learning errors owing to biased experimental database.

Hybrid Feature Selection Method Based on a Naïve Bayes Algorithm that Enhances the Learning Speed while Maintaining a Similar Error Rate in Cyber ISR

  • Shin, GyeongIl;Yooun, Hosang;Shin, DongIl;Shin, DongKyoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5685-5700
    • /
    • 2018
  • Cyber intelligence, surveillance, and reconnaissance (ISR) has become more important than traditional military ISR. An agent used in cyber ISR resides in an enemy's networks and continually collects valuable information. Thus, this agent should be able to determine what is, and is not, useful in a short amount of time. Moreover, the agent should maintain a classification rate that is high enough to select useful data from the enemy's network. Traditional feature selection algorithms cannot comply with these requirements. Consequently, in this paper, we propose an effective hybrid feature selection method derived from the filter and wrapper methods. We illustrate the design of the proposed model and the experimental results of the performance comparison between the proposed model and the existing model.

Robust Pressure Control of Variable Thrust Solid Propulsion System with Nonlinear Disturbance Observer (비선형 외란관측기를 이용한 가변추력 고체추진기관의 강인 압력제어)

  • Kang, Dae-Gyeom
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.59-64
    • /
    • 2021
  • In this paper, a mathematical pressure dynamics model for a variable thrust solid propulsion system with an electric actuator was derived from the mass conservation of gas. To solve the problem induced by modeling uncertainties in the propellant model and the dead zone of the actuator, a nonlinear pressure controller combined with a nonlinear disturbance observer was designed using a mathematical model of the system. The simulation results showed that the proposed pressure controller could reduce tracking errors compared to another conventional nonlinear controller even in situations where input disturbances were present.

Estimation of Urbanization Factor in Wargame Model using Fractal Dimension (Fractal 차원을 이용한 워게임에서의 도시화조정계수 추정)

  • Ojeong Kwon;Jaeoh Kim;Dongchul Kim;Namsuk Cho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.42-47
    • /
    • 2023
  • With rapid urbanization, the importance of urban warfare is increasing, and it is also required to reflect the characteristics of cities in wargame models. However, in the military's wargame models, the urbanization factor was calculated and used without theoretical basis. In this study, we investigate techniques for estimating the urbanization factor using Fractal dimension theory. The urbanization factor we propose can suggest a logical and valid representative value when used in conjunction with Agent Based Model and other methodologies.

Development of Underwater Hull Search Time Prediction Model with Discrete Event Simulation (이산사건 시뮬레이션을 이용한 수중 선체 탐색 시간 예측 모델 개발)

  • Joopil Lee;Seung-Ho Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.152-160
    • /
    • 2024
  • In the event of a maritime accident, search plans have traditionally been planned using experiential methods. However, these approaches cannot guarantee safety when the scale of a maritime accident increases. Therefore, this study proposes a model utilizing discrete event simulation (DES) to predict the diving time for compartment searches of a ship located on the seabed. The discrete event simulation model was created by applying the DEVS formalism. The M/V Sewol sinking was used as an example to simulate how to effectively navigate compartments of different sizes. The simulation results showed the optimal dive time with the number of decompression chambers needed to navigate the compartment as a variable. Based on this, we propose a methodology for efficient navigation planning while ensuring diver safety.

Reliability Analysis Using Field-Data of 5.56 mm Rifle (야전운용제원을 이용한 5.56 mm 소총 신뢰도 분석)

  • Shin, Tae-Sung;Seo, Hyun-Soo;Lee, Ho-Jun;Choi, Si-Young;Gil, Hyeon-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.584-591
    • /
    • 2020
  • Reliability is an important factor in weapons systems. Low reliability causes the weapons system to fail to function properly, which directly leads to the weakening of combat capability. This paper classifies the structure of the 5.56 mm rifle, which is currently used by the Korean army, into a total of seven assemblies and describes the eight functions necessary for the rifle to operate normally. In addition, the concept of reliability was defined as the MRBF, and the Poisson process model and TTT plot were explained as a reliability analysis theory for the repair function system. Next, the field-data obtained by defining failure as the replacement of parts other than periodic exchange of parts were refined, and the reliability was analyzed by entering the refined field operation specifications into the Minitab program. As a result, the reliability of the rifle was determined to be 251.73. The assembly parts that required improvement was identified as the barrel, lower body, and butt stock assembly, and 10 detailed parts needed to be improved. Finally, the limits of the reliability analysis using the field-data currently available for small caliber firearms were considered.

Estimating Characteristic Data of Target Acquisition Systems for Simulation Analysis (모의 분석을 위한 표적 획득 체계의 특성 데이터 산출)

  • Tae Yoon Kim;Sang Woo Han;Seung Man Kwon
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.1
    • /
    • pp.45-54
    • /
    • 2023
  • Under combat simulation environment when inputting the detection performance data of the real system into the simulated object the given data affects the simulation analysis result. ACQUIRE-Target Task Performance Metric (TTPM)-Target Angular Size (TAS) model is used as a target acquisition model to simulate the detection ability of entities in the main combat simulation tool. This model estimates the decomposition curve of the object sensor and output the detection distance according to the target type. However, it is not easy to apply the performance of the new detection object that the user wants to input to the target acquisition model. Users want to input the detection distance into the target acquisition model, but the target acquisition model requires sensor decomposition curve data according to encounter conditions. In this paper, we propose a method of inversely deriving the sensor decomposition curve data of the target acquisition model by taking the detection distance to the target as an input. Here, the sensor decomposition curve data simultaneously satisfies each detection distance for three types of targets: personnel, ground vehicles, and aircraft. Finally, the detection distance of various reconnaissance equipment is applied to the detection object, and the detection effect according to the reconnaissance equipment is analyzed.

Development of Underwater Warfare Models on the Naval Weapon Systems (해군무기체계 수중교전 모델 라이브러리 개발)

  • Han, Seungjin;Lee, Minkyu
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2013
  • ADD (Agency for Defense Development) has developed the naval warfare simulation environment (QUEST), this paper describes the model library of naval weapon systems for the application of underwater warfare simulation included in the QUEST. Models are basically developed in order to measure the effectiveness and tactical development of underwater engagement between ships and weapons. Analyzing the mission space of underwater engagement and the functionality of the legacy models, we define standards of the model structure and developed the model components. Each components are the well-defined environment, system, subsystem, algorithm models, and the interfaces are defined between them. Users can construct a model in an efficient way to various warfare scenarios using the re-usable model components and co-work with the common model library.