• 제목/요약/키워드: Defects Pattern

검색결과 434건 처리시간 0.121초

Partial Discharge Pattern Recognition of Cast Resin Current Transformers Using Radial Basis Function Neural Network

  • Chang, Wen-Yeau
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.293-300
    • /
    • 2014
  • This paper proposes a novel pattern recognition approach based on the radial basis function (RBF) neural network for identifying insulation defects of high-voltage electrical apparatus arising from partial discharge (PD). Pattern recognition of PD is used for identifying defects causing the PD, such as internal discharge, external discharge, corona, etc. This information is vital for estimating the harmfulness of the discharge in the insulation. Since an insulation defect, such as one resulting from PD, would have a corresponding particular pattern, pattern recognition of PD is significant means to discriminate insulation conditions of high-voltage electrical apparatus. To verify the proposed approach, experiments were conducted to demonstrate the field-test PD pattern recognition of cast resin current transformer (CRCT) models. These tests used artificial defects created in order to produce the common PD activities of CRCTs by using feature vectors of field-test PD patterns. The significant features are extracted by using nonlinear principal component analysis (NLPCA) method. The experimental data are found to be in close agreement with the recognized data. The test results show that the proposed approach is efficient and reliable.

Intelligence Package Development for UT Signal Pattern Recognition and Application to Classification of Defects in Austenitic Stainless Steel Weld (UT 신호형상 인식을 위한 Intelligence Package 개발과 Austenitic Stainless Steel Welding부 결함 분류에 관한 적용 연구)

  • Lee, Kang-Yong;Kim, Joon-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제15권4호
    • /
    • pp.531-539
    • /
    • 1996
  • The research for the classification of the artificial defects in welding parts is performed using the pattern recognition technology of ultrasonic signal. The signal pattern recognition package including the user defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection. The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian classifier are compared and discussed. The pattern recognition technique is applied to the classification of artificial defects such as notchs and a hole. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the artificial defects.

  • PDF

Ultrasonic Pattern Recognition of Welding Defects Using the Chaotic Feature Extraction (카오스 특징 추출에 의한 용접 결함의 초음파 형상 인식)

  • Lee, Won;Yoon, In-Sik;Lee, Byung-Chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제15권6호
    • /
    • pp.167-174
    • /
    • 1998
  • The ultrasonic test is recognized for its significance as a non-destructive testing method to detect volume defects such as porosity and incomplete penetration which reduce strength in the weld zone. This paper illustrates the defect detection in the weld zone of ferritic carbon steel using ultrasonic wave and the evaluation of pattern recognition by chaotic feature extraction using time series signal of detected defects as data. Shown in the time series data were that the time delay was 4 and the embedding dimension was 6 which indicate the geometric dimension of the subject system and the extent of information correlation. Based on fractal dimension and lyapunov exponent in quantitative chaotic feature extraction, feature value of 2.15, 0.47 is presented for porosity and 2.24, 0.51 for incomplete penetration The precision rate of the pattern recognition is enhanced with these values on the total waveform of defect signal in the weld zone. Therefore, we think that the ultrasonic pattern recognition method of weld zone defects of ferritic carbon steel by ultrasonic-chaotic feature extraction proposed in this paper can boost precision rate further than the existing method applying only partial waveform.

  • PDF

A Study on the Feature Extraction of Pattern Recognition for Weld Defects Evaluation of Titanium Weld Zone (티타늄 용접부의 용접결함평가를 위한 형상인식 특징추출에 관한 연구)

  • Yun, In-Sik
    • Journal of the Korean Society of Safety
    • /
    • 제26권5호
    • /
    • pp.17-22
    • /
    • 2011
  • This study proposes feature extraction method of pattern recognition by evaluation of weld defects in weld zone of titanium. For this purpose, analysis objectives in this study are features of attractor quadrant and fractal dimension. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics resulting from distance shifts such as porosity of weld zone. These differences in characteristics of weld defects enables the evaluation of unique characteristics of defects in the weld zone. In quantitative fractal feature extraction, feature values of 0.87 and 1.00 in the case of part of 0.5 skip distance and 0.72 and 0.93 in the case of part of 1.0 skip distance were proposed on the basis of fractal dimensions. Attractor quadrant point, feature values of 1.322 and 1.172 in the case of ${\phi}1{\times}3mm$ porosity and 2.264 and 307 in the case of ${\phi}3{\times}3mm$ porosity were proposed on the basis of distribution value. The Proposed feature extraction of pattern recognition in this study can be used for safety evaluation of weld zone in titanium.

An Inspection System for Multilayer Co-Extrusion Blown Plastic Film Line (공압출 다층 플라스틱 필름 라인을 위한 결함 검사 시스템)

  • Hahn, Jong Woo;Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • 제11권2호
    • /
    • pp.45-51
    • /
    • 2012
  • Multilayer co-extrusion blown film construction is a popular technique for producing plastic films for various packaging industries. Automated detection of defective films can improve the quality of film production process. In this paper, we propose a film inspection system that can detect and classify film defects robustly. In our system, first, film images are acquired through a high speed line-scan camera under an appropriate lighting system. In order to detect and classify film defects, an inspection algorithm is developed. The algorithm divides the typical film defects into two groups: intensity-based and texture-based. Intensity-based defects are classified based on geometric features. Whereas, to classify texture-based defects, a texture analysis technique based on local binary pattern (LBP) is adopted. Experimental results revealed that our film inspection system is effective in detecting and classifying defects for the multilayer co-extrusion blown film construction line.

Development of Automatic Precision Inspection System for Defect Detection of Photovoltaic Wafer (태양광 웨이퍼의 결함검출을 위한 자동 정밀검사 시스템 개발)

  • Baik, Seung-Yeb
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제20권5호
    • /
    • pp.666-672
    • /
    • 2011
  • In this paper, we describes the development of automatic inspection system for detecting the defects on photovoltaic wafer by using machine vision. Until now, The defect inspection process was manually performed by operators. So these processes caused the produce of poorly-made articles and inaccuracy results. To improve the inspection accuracy, the inspection system is not only configured, but the image processing algorithm is also developed. The inspection system includes dimensional verification and pattern matching which compares a 2-D image of an object to a pattern image the method proves to be computationally efficient and accurate for real time application and we confirmed the applicability of the proposed method though the experience in a complex environment.

A Study on the Optimization of PD Pattern Recognition using Genetic Algorithm (유전알고리즘을 이용한 부분방전 패턴인식 최적화 연구)

  • Kim, Seong-Il;Lee, Sang-Hwa;Koo, Ja-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제58권1호
    • /
    • pp.126-131
    • /
    • 2009
  • This study was carried out for the reliability of PD(Partial Discharge) pattern recognition. For the pattern recognition, the database for PD was established by use of self-designed insulation defects which occur and were mostly critical in GIS(Gas Insulated Switchgear). The acquired database was analyzed to distinguish patterns by means of PRPD(Phase Resolved Partial Discharge) method and stored to the form with to unite the average amplitude of PD pulse and the number of PD pulse as the input data of neural network. In order to prove the performance of genetic algorithm combined with neural network, the neural networks with trial-and-error method and the neural network with genetic algorithm were trained by same training data and compared to the results of their pattern recognition rate. As a result, the recognition success rate of defects was 93.2% and the neural network train process by use of trial-and-error method was very time consuming. The recognition success rate of defects, on the other hand, was 100% by applying the genetic algorithm at neural network and it took a relatively short time to find the best solution of parameters for optimization. Especially, it could be possible that the scrupulous parameters were obtained by genetic algorithm.

Inspection of Point Defects on A LCD panel Using High Resolution Line Cameras (고해상도 라인 스캔 카메라를 이용한 LCD 점 이물 검출)

  • 백승일;곽동민;박길흠
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.351-354
    • /
    • 2003
  • To inspect point-defect in LCD pannel, calculate period and eliminated pattern. And then find point-defect to compare block image with each period. First processing, Founded over point defects. To reduce wrong point defect. Next, label point-defects and eliminated not surpass fixed limit-size.

  • PDF

Quantitative Evaluation of Impact Defects inside of Composite Material Plate by ESPI (ESPI를 이용한 충격손상을 받은 복합재료 내부결함의 정량평가)

  • 김경석;양광영;장호섭;지창준;윤홍석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.254-258
    • /
    • 2003
  • Electronic Speckle Pattern for quantitative evaluation of a impact defect inside of composite material plate are described. The impact on composite material makes inside delamination which is difficult to detect visual inspection and ultrasonic testing due to non-homeogenous structure. This paper proposes the quantitative evaluation technique of defects under real impact. Artificial defects are designed inside of composite plate for development of inspection technique and real defects under impact are inspected and compared with results of visual inspection.

  • PDF

The Development of Automatic Inspection System for Flaw Detection in Welding Pipe (배관용접부 결함검사 자동화 시스템 개발)

  • Yoon Sung-Un;Song Kyung-Seok;Cha Yong-Hun;Kim Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제15권2호
    • /
    • pp.87-92
    • /
    • 2006
  • This paper supplements shortcoming of radioactivity check by detecting defect of SWP weld zone using ultrasonic wave. Manufacture 2 stage robot detection systems that can follow weld bead of SWP by method to detect weld defects of SWP that shape of weld bead is complex for this as quantitative. Also, through signal processing ultrasonic wave defect signal system of GUI environment that can grasp easily existence availability of defect because do videotex compose. Ultrasonic wave signal of weld defects develops artificial intelligence style sightseeing system to enhance pattern recognition of weld defects and the classification rate using neural net. Classification of weld defects that do fan Planar defect and that do volume defect of by classify.