• Title/Summary/Keyword: Defect length

Search Result 399, Processing Time 0.024 seconds

Effects of root trunk length after GTR on clinical outcomes (하악 제1대구치 치근본체의 길이가 조직유도재생술의 임상결과에 미치는 영향)

  • Pi, Sung-Hee;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.427-434
    • /
    • 2006
  • The form of furcation influence both the pathogenesis of periodontal destruction and therapeutic results. The present study was performed to evaluate the effect of root trunk length on clinical outcomes of guided tissue regeneration. Total 30 mandibular first molars were evaluated in this study. Probing pocket depth, clinical attachment level, vertical defect depth and horizontal defect depth were measured at baseline and 6 month after GTR. Correlation coefficients between root trunk length and other clinical measurement were analyzed. The results of this study were as follows 1. The mean root trunk length in lower 1st molar was 2.15 mm. 2. Probing pocket depth, clinical attachment level, vertical defect depth and horizontal defect depth were significantly reduced at 6 month postoperatively compared to values of baseline 3. Correlation coefficient between root trunk length and vertical defect depth at baseline was 0.406 showing the positive correlation 4. Correlation coefficient between root trunk length and horizontal defect depth at baseline was -0.463 showing the negative correlation. 5. Correlation coefficient between root trunk length and decrease of horizontal defect depth after GTR was 0.654 showing the positive correlation. In conclusion, the root trunk length maybe effector for clinical outcome after guided tissue regeneration.

Defect Length Measurement using Underwater Camera and A Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.746-751
    • /
    • 2003
  • A method of measuring the length of defects on the wall of the spent nuclear fuel pool using the image processing and a laser slit beam is proposed. Since the defect monitoring camera is suspended by a crane and hinged to the crane hook, the camera viewing direction can not be adjusted to the orientation that is exactly perpendicular to the wall. Thus, the image taken by the camera, which is horizontally rotated along the axis of the camera supporting beam, is distorted and thus, the precise length can not be measured. In this paper, by using the LASER slit beam generator, the horizontally rotated angle of the camera is estimated. Once the angle is obtained, the distorted image can be easily reconstructed to the image normal to the wall. The estimation algorithm adopts a 3-dimensional coordinate transformation of the image plane where both the laser slit beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect taken at arbitrary rotated angle can be reconstructed to an image normal to the wall. From the result of a series of experiments, the accuracy of the defect is measured within 0.6 and 1.3 % error bound of real defect size in the air and underwater, respectively under 30 degree of the inclined angle of the laser slit beam generator. Also, the error increases as the inclined angle increases upto 60 degree. Over this angle, the defect length can not be measured since the defect image disappears. The proposed algorithm enables the accurate measurement of the defect length only by using a single camera and a laser slit beam.

  • PDF

Effect of Small Surface Defects in the Starting Material on Product Quality after Drawing (원소재의 미소 표면결함이 인발공정에 미치는 영향)

  • Nam, C.H.;Lee, I.K.;Lee, J.K.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • In the current study, the effect of small surface defects in the starting material including roughness, indentations, or scratches, which are perpendicular to the direction of drawing, on the product quality is investigated using the finite element method. An axisymmetric defect is assumed. Such defects are defined by a cylindrical defect area and two tapered regions connecting the defect area to the non-defective area of the material. Various conditions for these initial surface defects are considered, including defect depth, defect slope and defect length. To describe the plastic deformation of the defect in detail during the simulation, local remeshing is applied. Based on the finite element results, defect disappearance maps were generated. It was found that defect disappearance is significantly dependent on the defect depth and the defect length coupled with the defect slope.

Defect Length Estimation Using SQI for Underground Gas Pipelines (SQI를 이용한 지하 매설 가스 배관 결함 길이 추정)

  • Kim, Min-Ho;Choi, Doo-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.27-32
    • /
    • 2011
  • In this paper a new defect length estimation algorithm using SQI(self quotient image) is presented for the MFL(magnetic flux leakage) inspection of underground gas pipelines. Gas pipelines are magnetized by the permanent magnets of the MFL PIG(pipeline inspection gauge) when the PIG runs through pipelines. If defects or corrosions exist in the pipeline, magnetic leakage flux is increased. The MFL signals measured by hall sensors are analyzed to estimate defect length using SQI. For 74 real defects carved in KOGAS pipeline simulation facility(KPSF) the accuracy of defect length estimation of the proposed algorithm was compared with that of conventional methods.

Propagation Characteristic of Ultrasonic on Slit Defect in Butt Joint (맞대기 용접부내의 인공 결함에서 초음파의 전파특성)

  • 남영현
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.37-47
    • /
    • 1996
  • An ultrasonic testing uses the directivity of the ultrasonic wave which propagates in one direction. The directivity is expressed as the relationship between the propagate direction and its sound pressure. The directivity of ultrasonic wave is related to determination of testing sensitivity, scanning pitch and defect location. This paper investigated the directivity of ultrasonic wave, which scattered from slit defect located in heat-affected zone (HAZ) in butt joint using visualization method. The directivity of shear waves scattered from slit defect were different according to probe direction (far defect, near defect) and probe position (forward movement, maximum echo position, backward movement). The difference of directivity of reflection wave was existed between 2 MHz and 4 MHz angle probes. In the case of 2 MHz angle probe, the directivity of reflection wave was appeared sharp form because of the relation wave length and defect size.

  • PDF

Fatigue life evaluation of socket welded pipe with incomplete penetration defect: I-test and FE analysis

  • Lee, Dong-Min;Kim, Seung-Jae;Lee, Hyun-Jae;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3852-3859
    • /
    • 2021
  • This paper presents experimental and numerical analysis results regarding the effects of an incomplete penetration defect on the fatigue lives of socket welded pipes. For the experiment, four-point bending fatigue tests with various defect geometries (defect depth and circumferential length) were performed, and test results are presented in terms of stress-life data. The results showed that for circumferentially short defects, the fatigue life tends to increase with increasing crack depth, but for longer defects, the trend becomes the opposite. Finite element analysis showed that for short defects, the maximum principal stress decreases with increases in crack depth. For a longer defect, the opposite trend was found. Furthermore, the maximum principal stress tends to increase with an increase in defect length regardless of the defect depth.

Advanced electromagnetic wave-based method for characterizing defects in cement-based structures using time domain reflectometry

  • Dongsoo Lee;Jong-Sub Lee;Young K. Ju;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.621-630
    • /
    • 2024
  • This study presents novel electromagnetic wave-based methods for evaluating the integrity of cement-based structures using time domain reflectometry (TDR). Two cement-based plates with embedded rebars are prepared under sound and defective conditions. TDR tests are carried out using transmission lines with various numbers of artificial joints, and electromagnetic waves are measured to assess the integrity of the plates. The experimental results show that the travel time of electromagnetic waves is consistently longer in sound plates than in defective ones, and an increase in the reflection coefficients is observed in the defect zone of the defective plates. Electromagnetic wave velocities are higher in the defective plates, especially when connectors are present in the transmission line. A novel approach based on the area of the reflection coefficient provides larger areas in the defective plates, and the attenuation effect of the electromagnetic waves induces a difference in the areas of the reflection coefficient between the two defect conditions. An alternative method using the centroid of the defect zone slightly overestimates the location of the defect zone. The length of the defect zone is estimated using the defect ratio and wave velocities of cement, air, and plate. The length of the defect zone can also be calculated using the travel times within the plate, total measured length of the plate, and wave velocities in the cement and air. Therefore, the electromagnetic wave-based methods proposed in this study may be useful for estimating the location and length of defect zones by considering attenuation effects.

A Study on the Defect length Measurement of Titanium Weld Zone Considering Acoustical Anisotropy (음향 이방성을 고려한 티타늄 용접부의 결함길이 측정에 관한 연구)

  • Park, Hee-Dong;Yun, In-Sik;Yi, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1070-1077
    • /
    • 2011
  • This study intends to assess the defect in the weld zone of titanium grade 2 plate in terms of acoustical anisotropy based on the angle beam method. Depending on the rolling direction, the ratio of wave velocity was found to be 1.08 and the difference in the angle of refraction was more than seven degrees, confirming the presence of acoustical anisotropy. Thus for measuring the length of defect in the weld zone of the titanium plate (thickness of 10mm), the distance amplitude characteristics curves of titanium, TDACC-R and TDACC-T were constructed for the measurements in consideration of the acoustical anisotropy on CRT of the ultrasonic testing equipment. As a result, when the distance amplitude characteristics curve corresponds to the rolling direction, the length of defect was close to the actual measurement within 1mm and when different, the difference was found to be over 4mm. It was affirmed that the acoustical anisotropy should be taken into consideration when measuring the length of defects in the weld zone of the titanium plate with the presence of acoustical anisotropy.

Ultimate Defect Detection Using Run Length Coding in Automatic Vision Inspection System (영상기반 자동검사시스템에서 Run Length Coding을 이용한 한도 결함 검출 전처리 기법)

  • Joo, Younjg-Bok;Kwon, Oh-Young;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.8-11
    • /
    • 2012
  • Automated Vision Inspection (AVI) systems automatically detect any defect feature in a surface image. The performance of the system can be measured under a special circumstances such as ultimate defect detection. In this situation, the defect signal level is similar to noise level and it becomes hard to make a solid decision with AVI systems. In this paper, we propose an effective preprocessing technique to enhance SNR (Signal to Noise Ratio). The method is motivated by some principles of HVS (Human Visual System) and RLC (Run Length Coding) techniques is used for this purpose. The proposed preprocessing technique enhances SNR under ultimate defect conditions and improves overall performance of AVI system.