• Title/Summary/Keyword: Defect control

Search Result 862, Processing Time 0.52 seconds

Development of Automated Non-Destructive Ultrasonic Inspection Equipment for Welding Crack Inspection (용접크랙검사용 비파괴 초음파탐상 자동화검사장비 개발)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.101-106
    • /
    • 2020
  • This research is related to a development of the ultrasonic detector for an internal defect detection of various assembly part's welding zone. In this research, measurement S/Ws including system's motion control, S/W ultrasonic transmitter/receiver control, defect judgment standard setting, etc. have been designed for ultrasonic detection, and welding defects sample network, etc. were also designed for comparison between products in good condition and defective products. Through this kind of system, automatic detection function can be performed for the depth and the defect location of the assembly parts welding zone, and the system is able to make a judgment of internal defect detection which is used to be performed by an expert in the past.

Defect Detection of Brazing Joint in Heat Exchanger Using X-ray Image (X-선을 이용한 열교환기 브레이징 접합부 결함 검출)

  • Kim, Jin-Young;Seo, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1044-1050
    • /
    • 2011
  • The quality of brazing joints is one of the most important factors that have an effect on the performance of the brazing joint-based heat exchangers with the growing use in industry recently. Therefore, it is necessary to inspect the brazing joints in order to guarantee the performance of the heat exchangers. This paper presents a non-destructive method to inspect the brazing joints of the heat exchangers using X-ray. Firstly, X-ray cross-sectional images of the brazing joints are obtained by using CT (Computerized Tomography) technology. Cross-sectional image from CT is more useful to detect the inner defects than the traditional transmitted X-ray image. Secondly, the acquired images are processed by an algorithm proposed for the defect detection of brazing joint. Finally, two types of brazing joint are examined in a series of experiments to detect the defects in brazing joints. The experimental results show that the proposed algorithm is effective for defect detection of the brazing joints in heat exchangers.

Internal Defect Analysis of Transformers using DGA (유중가스분석을 통한 변압기 내부결함 분석)

  • Kim, Seong-Hwan;Park, Tae-Sik
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.354-359
    • /
    • 2020
  • DGA(Dissolved Gas Analysis) is regularly performed to detect internal defects of power transformers and prevent failures. The overheating or discharging in the transformer can be confirmed by DGA but the defective parts should be identified by internal inspection. However, winding or iron core defects cannot be checked by internal inspection, so it is impossible to establish actions by DGA alone. In this paper, the internal defect mode is analyzed and presented based on the transformer internal inspection reports, and the internal defect can be predicted by considering DGA.

Optical Design and Construction of Narrow Band Eliminating Spatial Filter for On-line Defect Detection (온라인 결함계측용 협대역 제거형 공간필터의 최적설계 및 제작)

  • 전승환
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.4
    • /
    • pp.59-67
    • /
    • 1998
  • A quick and automatic detection with no harm to the goods is very important task for improving quality control, process control and labour reduction. In real fields of industry, defect detection is mostly accomplished by skillful workers. A narrow band eliminating spatial filter having characteristics of removing the specified spatial frequency is developed by the author, and it is proved that the filter has an excellent ability for on-line and real time detection of surface defect. By the way,. this spatial filter shows a ripple phenominum in filtering characteristics. So, it is necessary to remove the ripple component for the improvement of filter gain, moreover efficiency of defect detection. The spatial filtering method has a remarkable feature which means that it is able to set up weighting function for its own sake, and which can to obtain the best signal relating to the purpose of the measurement. Hence, having an eye on such feature, theoretical analysis is carried out at first for optimal design of narrow band eliminating spatial filter, and secondly, on the basis of above results spatial filter is manufactured, and finally advanced effectiveness of spatial filter is evaluated experimentally.

  • PDF

Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code

  • Xia, Zhi G.;Chen, Shao J.;Liu, Xing Z.;Sun, Run
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.461-473
    • /
    • 2020
  • Natural rock mass contains defects of different shapes, usually filled with inclusions such as clay or gravel. The presence of inclusions affects the failure characteristics and mechanical properties of rock mass. In this study, the strength and failure characteristics of rock with inclusions were studied using the particle flow code under uniaxial compression. The results show that the presence of inclusions not only improves the mechanical properties of rock with defects but also increases the bearing capacity of rock. Circular inclusion has the most obvious effect on improving model strength. The inclusions affect the stress distribution, development of initial crack, change in crack propagation characteristics, and failure mode of rock. In defect models, concentration area of the maximum tensile stress is generated at the top and bottom of defect, and the maximum compressive stress is distributed on the left and right sides of defect. In filled models, the tensile stress and compressive stress are uniformly distributed. Failing mode of defect models is mainly tensile failure, while that of filled models is mainly shear failure.

The Effect of a Hydroxyapatite and 4-hexylresorcinol Combination Graft on Bone Regeneration in the Rabbit Calvarial Defect Model (가토의 두정골 결손부 모델에서 수산화인회석에 4-hexylresorcinol을 혼합하여 만든 인공합성골이식재의 골형성효과에 대한 연구)

  • Kim, Min Keun;Park, Yong Tae;Kim, Seong-Gon;Park, Young-Wook;Lee, Suk-Keun;Choi, Weon-Sik
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.6
    • /
    • pp.377-383
    • /
    • 2012
  • Purpose: The aim of this study was to evaluate the effect of 4-hexylresorcinol and hydroxyapatite combination graft on bone regeneration in the rabbit calvarial defect model. Methods: Ten New Zealand white rabbits were used for this study. Bilateral round shaped defects (diameter: 8.0 mm) were created on the parietal bone. 4-hexylresorcinol and hydroxyapatite combination graft material was grafted into the right parietal bone defect area (experimental). The left bone defect area was not filled with anything (control). The animals were sacrificed at 4 weeks and 8 weeks after grafting. A micro-computerized tomography of each specimen was taken, and the specimens were stained for histological analysis. Results: The average value of bone mineral density (BMD) and Bone volume (BV) was higher in the experimental group than in the control group at 4 weeks and 8 weeks after surgery. However, the difference was not statistically significant (P>0.05) at 8 weeks after grafting. The BMD and BV in the experimental group at 4 weeks after surgery was significantly higher than those in the control group (P<0.05). Conclusion: 4-hexylresorcinol and hydroxyapatite combination graft material showed higher initial bone formation than the control, however, there was no difference at 8weeks after operation.

Defects Length Measurement using an Estimation Algorithm of the Camera Orientation and an Inclination Angle of a Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup;Kang, E-Sok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1452-1457
    • /
    • 2004
  • In this paper, a method of measuring the length of defects on the wall and restructuring the defect image is proposed based on the estimation algorithm of a camera orientation which uses the declination angle of a laser slit beam. The estimation algorithm of the horizontally inclined angle of CCD camera adopts a 3-dimensional coordinate transformation of the image plane where both the laser beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect can be reconstructed to an image normal to the wall. From the result of a series of experiments, the measuring accuracy of the defect is measured within 0.5% error bound of real defect size under 30 degree of the horizontally inclined angle. The proposed algorithm provides the method of reconstructing the image taken at any arbitrary horizontally inclined angle to the image normal to the wall and thus, it enables the accurate measurement of the defect lengths only by using a single camera and a laser slit beam.

  • PDF

Effect of Welding Condition and Tool Shape on Defect Formation of Extruded AA6005 with Non-uniform Thickness using Load-Controlled Friction Stir Welding Technique (두께 불균일 AA6005 압출재의 하중제어 마찰교반접합에서 접합 조건과 툴 형상이 결함발생에 미치는 영향)

  • Yoon, Tae-Jin;Kang, Myung-Chang;Jung, Byong-Ho;Kang, Chung-Yun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.45-51
    • /
    • 2013
  • Friction stir welding using aluminum alloys has been widely applied for transportation vehicles because of the light specific weight, which can be used to obtain sound joint and high mechanical properties. This study shows the effects of rotation speed, welding speed, welding load, and tool shape on defect formation with extruded AA6005, which is used for railway vehicle structures of non-uniform thickness welded by friction stir welding using load control systems. Optical microscopy observations and liquid penetrant testing of each FSW joint were carried out in order to observe defect formation. Two kinds of defects, that of probe wear and that of lack of penetration in the bottom of the welded zone, were observed. In the case of using a taper shaped tool, the defect free zone is very narrow, within 100 kgf; however, in case of using a cylindrical shape tool, the defect free zone is wider.

Random topological defects in double-walled carbon nanotubes: On characterization and programmable defect-engineering of spatio-mechanical properties

  • A. Roy;K. K. Gupta;S. Dey;T. Mukhopadhyay
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.91-109
    • /
    • 2024
  • Carbon nanotubes are drawing wide attention of research communities and several industries due to their versatile capabilities covering mechanical and other multi-physical properties. However, owing to extreme operating conditions of the synthesis process of these nanostructures, they are often imposed with certain inevitable structural deformities such as single vacancy and nanopore defects. These random irregularities limit the intended functionalities of carbon nanotubes severely. In this article, we investigate the mechanical behaviour of double-wall carbon nanotubes (DWCNT) under the influence of arbitrarily distributed single vacancy and nanopore defects in the outer wall, inner wall, and both the walls. Large-scale molecular simulations reveal that the nanopore defects have more detrimental effects on the mechanical behaviour of DWCNTs, while the defects in the inner wall of DWCNTs make the nanostructures more vulnerable to withstand high longitudinal deformation. From a different perspective, to exploit the mechanics of damage for achieving defect-induced shape modulation and region-wise deformation control, we have further explored the localized longitudinal and transverse spatial effects of DWCNT by designing the defects for their regional distribution. The comprehensive numerical results of the present study would lead to the characterization of the critical mechanical properties of DWCNTs under the presence of inevitable intrinsic defects along with the aspect of defect-induced spatial modulation of shapes for prospective applications in a range of nanoelectromechanical systems and devices.

Defect Length Measurement using Underwater Camera and A Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.746-751
    • /
    • 2003
  • A method of measuring the length of defects on the wall of the spent nuclear fuel pool using the image processing and a laser slit beam is proposed. Since the defect monitoring camera is suspended by a crane and hinged to the crane hook, the camera viewing direction can not be adjusted to the orientation that is exactly perpendicular to the wall. Thus, the image taken by the camera, which is horizontally rotated along the axis of the camera supporting beam, is distorted and thus, the precise length can not be measured. In this paper, by using the LASER slit beam generator, the horizontally rotated angle of the camera is estimated. Once the angle is obtained, the distorted image can be easily reconstructed to the image normal to the wall. The estimation algorithm adopts a 3-dimensional coordinate transformation of the image plane where both the laser slit beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect taken at arbitrary rotated angle can be reconstructed to an image normal to the wall. From the result of a series of experiments, the accuracy of the defect is measured within 0.6 and 1.3 % error bound of real defect size in the air and underwater, respectively under 30 degree of the inclined angle of the laser slit beam generator. Also, the error increases as the inclined angle increases upto 60 degree. Over this angle, the defect length can not be measured since the defect image disappears. The proposed algorithm enables the accurate measurement of the defect length only by using a single camera and a laser slit beam.

  • PDF