• Title/Summary/Keyword: Defect concentration

Search Result 237, Processing Time 0.025 seconds

A Suggestion of New Approach for Measurement of Remaining Prestress (잔존프리스트레스 측정을 위한 새로운 접근법 제안)

  • 이창수;김승익;김현겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.835-840
    • /
    • 2001
  • The new approach is a kind method of restoring temporary defect. Here, it is important for the defect not to occur problems of both local effect and global system. A basic concept is that it measures remaining prestress of PSC structures during the defect is restored. This study suggested new approach for measurement of remaining prestress. Two important results are obtained. First, safety problems, local stress concentration and global system, are very satisfied. Second, measurement value exists within error bound $\pm$ 1% in comparison with known value.

  • PDF

The Effects of high Energy(1.5MeV) B+ ion Implantation and Initial Oxygen Concentration Upon Deep Level in CZ Silicon Wafer (고 에너지 (1.5 MeV) Boron 이온 주입과 초기 산소농도 조건이 깊은 준위에 미치는 영향에 관한 연구)

  • Song, Yeong-Min;Mun, Yeong-Hui;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • The effect of high energy B ion implantation and initial oxygen concentration upon defect formation and gettering of metallic impurities in Czochralski silicon wafer has been studied by applying DLTS( Deep Level Transient Spectroscopy), SIMS(Secondary ton Mass Spectroscopy), BMD (Bulk Micro-Defect) analysis and TEM(Transmission Electron Microscopy). DLTS results show the signal of the deep levels not only in as-implanted samples but also in low and high temperature annealed samples. Vacancy-related deep levels in as- implanted samples were changed to metallic impurities-related deep levels with increase of annealing temperature. In the case of high temperature anneal, by showing the lower deep level concentration with increase of initial oxygen concentration, high initial oxygen concentration seems to be more effective compared with the lower initial oxygen one.

  • PDF

Stress Concentration Effects on the Nucleation of the Structural Defects in Highly Strained Heteroepitaxial Layers (高變形된 異種 에피층에서 응력 집중이 결정결함 생성에 미치는 영향)

  • Kim, Sam-Dong;Lee, Jin-Koo
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.615-621
    • /
    • 2001
  • We carried out the kinetic model calculations in order to estimate the nucleation rates for two kinds of half-loop dislocations in highly strained hetero-epitaxial growths; $60^{\circ}$dislocations and twinning dislocations. The surface defects and the stress concentration effects were considered in this model, and the remaining elastic strain of the epilayers with increasing film thickness was taken into account by using the modified Matthews' relation. The calculations showed that the stress concentration effect at surface imperfections is very important for describing the defect generation in highly mismatched epitaxial growth. This work also showed that the stress concentration effect determined the type of dislocation nucleating dominantly at early growth stages in accordance with our XTEM (cross-section transmission electron microscopy) defect observation.

  • PDF

Effect on N Defect in Cu-doped III-nitride Semiconductors

  • Kang, Byung-Sub;Lee, Jae-Kwang;Lim, Yong-Sik;Song, Kie-Moon;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.332-336
    • /
    • 2011
  • We studied the effect on the electronic and magnetic properties of the N defect in clean and Cu-doped wurtzite III-nitrides by using the first-principles calculations. When it is doped two Cu atoms in the nearest neighboring sites, the system of AlN, GaN, or InN with the N vacancy is energetically more favorable than that without the N vacancy site. When the Cu concentration increases, the total magnetic moment of a supercell becomes small. The ferromagnetism of Cu atom is very low due to the weak 3d-3d coupling. It is noticeable that the spin-exchange interaction between the Cu-3d and N defect states is important.

Analysis of the relationship between breakdown voltage and defect of thyristor (사이리스터의 결함과 항복전압의 관계 분석)

  • Lee, Y.J.;Seo, K.S.;Kim, H.W.;Kim, K.H.;Kim, S.C.;Kim, N.K.;Kim, B.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.149-150
    • /
    • 2005
  • Thyristor breakdown voltage variation acceleration aging test was investigated. The breakdown voltage was deceased after 1000 hours acceleration aging test. It temperature rising caused by electric field concentration at the edge beveling region of the thyristor was confirmed using Silvaco device simulation. The local temperature rising is driving force for the defect propagation. Consequently, propagated defects of the beveling region seems to decrease thyristor's breakdown voltage.

  • PDF

The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate - (원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 -)

  • Kim, Cheol-Woong;Ko, Young-Ho;Lee, Gun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.

Research for High Quality Ingot Production in Large Diameter Continuous Czochralski Method (대구경 연속성장 초크랄스키법에서 고품질 잉곳 생산을 위한 연구)

  • Lee, Yu Ri;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.124-129
    • /
    • 2016
  • Recently industry has voiced a need for optimally designing the production process of low-cost, high-quality ingots by improving productivity and reducing production costs with the Czochralski process. Crystalline defect control is important for the production of high-quality ingots. Also oxygen is one of the most important impurities that influence crystalline defects in single crystals. Oxygen is dissolved into the silicon melt from the silica crucible and incorporated into the crystalline a far larger amount than other additives or impurities. Then it is eluted during the cooling process, there by causing various defect. Excessive quantities of oxygen degrade the quality of silicone. However an appropriate amount of oxygen can be beneficial. because it eliminates metallic impurities within the silicone. Therefore, when growing crystals, an attempt should be made not to eliminate oxygen, but to uniformly maintain its concentration. Thus, the control of oxygen concentration is essential for crystalline growth. At present, the control of oxygen concentration is actively being studied based on the interdependence of various factors such as crystal rotation, crucible rotation, argon flow, pressure, magnet position and magnetic strength. However for methods using a magnetic field, the initial investment and operating costs of the equipment affect the wafer pricing. Hence in this study simulations were performed with the purpose of producing low-cost, high-quality ingots through the development of a process to optimize oxygen concentration without the use of magnets and through the following. a process appropriate to the defect-free range was determined by regulating the pulling rate of the crystals.

The Effect of Melt Stoichiometry on the Native Defects of LEC GaAs (LEC GaAs의 점결함에 대한 Melt 조성의 영향)

  • 고경현;안재환
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.141-145
    • /
    • 1991
  • The effects of the melt stoichiometry on the concentration of electron and hole traps formed by intrinsic defects of LEC GaAs were studied employing DLTS measurement technique. The concentration of EL2 were varied from $10^{16}cm^{-3}$ to $10^{11}cm^{-3}$ when the arsenic atomic fraction in the melt ([As]/{[As]+[Ga]} varied from 0.5 to 0.42. Specifically, when the fraction falls below 0.46, the 띠2 concentration start to decrease sharply. For 68meV and 77/200meV traps, their concentration increase inversely with the arsenic atomic fraction and have the values in the range of TEX>$10^{15}cm^{-3}$ and $10^{14}cm^{-3}$, respectively. It is, therefore, concluded that these hole traps originated from the intrinsic acceptor defects including $GS^{AS}$.

  • PDF

Calculation of Carrier Electron Concentration in ZnO Depending on Oxygen Partial Pressure

  • Kim, Eun-Dong;Park, Jong-Mun;Kim, Sang-Cheol;Kim, Nam-Kyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.222-232
    • /
    • 2000
  • The relationship between carrier electron concentration(n) and atmosphere oxygen partial pressure($P_{O_2}$ for pure ZnO calculated by the mass-action law, well-known as n ${\propto}P^{-1/m}_{O_2}$ where m = 4 or 6 for the single or the double ionization of the native donor defects due to its nonstoichiometry, respectively, is found in competition with the calculation result on the basis that the total defect concentration is the sum of those of unionized and ionized defects. Definitively, it is found inconsistent with the calculation result by employing the Fermi-Dirac(FD) statistics for their ionization processes. By application of the FD statistics law to the ionization while assuming the defect formation is still ruled by the mass-action law, the calculation results shows the concentration is proportional to $P^{-1/2}_{O_2}$ whenever they ionize singly and/or doubly. Conclusively we would like to propose the new theoretical relation n ${\propto}P^{-1/m}_{O_2}$ because the ionization processes of donors in ZnO should be treated with the electronoccupation probability at localized quantum states in its forbidden band created by the donor defects, i.e. the FD statistics

  • PDF

The study on cell Vth distibution induced by heavily doped channel ionn and Si-SiN stress in flash memory cell (과도한 채널 이온 주입 농도 및 Si-SiN 스트레스가 플래쉬 메모리셀 산포에 미치는 영향)

  • Lee Chi-Kyoung;Park Jung-Ho;Kim Han-Su;Park Kyu-Charn
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.485-488
    • /
    • 2004
  • As scaling down the cell channel length, the increment of B concentration in channel region is inevitable to overcome the punch-through, especially in flash memory cell with 90nm technology. This paper shows that the high dose ion implantation in channel cause the Si defect. which has been proved to be the major cause of the tailed Vth in distribution. And also mechanical stress due to SiN-anneal process can induce the Si dislocation. and get worse it. With decreasing the channel implantation dose, skipping the anneal and reducing the mechanical stress, Si defect problem is solved completely. We are verify first that the optimization of B concentration in channel must be certainly considered in order to improve Si defect. It is also certainly necessary to stabilize the distribution of cell Vth in the next generation of flash memory.

  • PDF