• 제목/요약/키워드: Defect Element

검색결과 355건 처리시간 0.025초

엘보우 붕괴모멘트에 미치는 국부 감육결함의 원주방향 위치에 대한 영향 (Effect of Circumferential Location of Local Well Thinning Defect on the Collapse Moment of Elbow)

  • 김진원;이장곤
    • 한국안전학회지
    • /
    • 제20권1호
    • /
    • pp.55-61
    • /
    • 2005
  • The purpose of this study is to investigate the effect of circumferential location of local wall thinning defect on the collapse behavior of an elbow. Thus, the present study conducts three-dimensional finite element analysis on the 90-degree elbow containing a local wall thinning at intrados, crown and extrados of bend region and evaluates the collapse moment of wall thinned elbow under various thinning shapes and loading conditions. Combined internal pressure and bending moment are considered as an applied load. The internal pressure of $0\~20MPa$ and both closing and opening mode bending are employed. The results of analysis show that the reduction in collapse moment of the elbow by local wall thinning is more significant for a defect locating at crown than for a defect locating at intrados or at extrados. Also, the effect of internal pressure on the collapse moment of wall thinned elbow depends on the circumferential location of thinning defect and applied bending mode.

내부 결함을 포함하는 알루미늄 합금 주조품의 피로해석을 위한 모델링 (Modeling for the Fatigue Analysis of Al Alloy Casting Containing Internal Shrinkage Defect)

  • 이성원;김학구;황호영;곽시영
    • 한국주조공학회지
    • /
    • 제30권5호
    • /
    • pp.196-200
    • /
    • 2010
  • The structural stress and fatigue behavior of tensile specimen containing internal shrinkage defect were modeled. Real shrinkage defect in casting was scanned by industrial CT (computed tomography), and subsequently its shape was simplified by ellipsoidal primitives for the structural analysis (S.S.M., shape simplification method). The analysis results were compared with the results by real shrinkage shape without any simplification process. It was possible to consider real shrinkage of casting in stress analysis and the method to predict fatigue life of casting with defect was proposed.

완전방실중격결손수술의 단순화 (Simplified Approach to Repair of Complete Atrioventricular Septal Defect)

  • 김웅한;김수철;오삼세;정도현;정홍주;김욱성;이창하;정철현;나찬영
    • Journal of Chest Surgery
    • /
    • 제31권9호
    • /
    • pp.899-902
    • /
    • 1998
  • 최근들어 완전방실중격결손에 대한 해부학적 이해의 증가로 새로운 방법에 의한 교정이 시도되고 있다. 본 부천세종병원 흉부외과에서는 완전방실중격결손환자 2명을 대상으로 기존의 통상적인 수술방법을 간소화 하여 심실중격부위의 큰 결손을 포편을 사용하지 않고 직접봉합해 주었다. 수술후 두 환자 모두 양호한 경과를 보였으며 3개월 까지의 외래 추적에서도 별다른 문제가 없었다. 비록 이렇게 간소화된 수술방법으로 통상적인 교정방법에 필적 할 만한 단기성적을 2 례에서 얻을 수 있었으나 좌심실유출로 협착이나 판막 기능의 장애없이 방실중격결손환자에게 적용될 수 있을 지에 대해서는 좀더 많은 경험과 장기 추적이 요구된다고 하겠다.

  • PDF

경계요소법을 이용한 다중결함의 SH형 초음파 산란장 해석에 관한 연구 (A Study on Scattered Fields Analysis of Ultrasonic SH-Wave from Multi-Defects by Boundary Element Method)

  • 이준현;이서일
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1878-1885
    • /
    • 1999
  • Ultrasonic technique which is one of the most common nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristic of scattering sign al from internal defects. Therefore, a numerical analysis of ultrasonic scattering field due to defect profiles is absolutely needed for the accurate, quantitative estimation of internal defects. In this paper, the SH-wave scattering by multi-cavity defects and inclusion using Elastodynamic Boundary Element Method is studied. The effects of shape and distance of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in SH-wave scattering is also investigated. Numerical calculations by the BEM have been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results can be used to improve the detection sensitivity and pursue quantitative nondestructive evaluation for inverse problem.

유한요소법을 이용한 전방압출공정의 내부결함에 관한 연구 (A Study on Central Bursting Defects in Forward Extrusion by the Finite Element Method)

  • 김태형;이진희;권혁홍;김병민;강범수;최재찬
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.66-74
    • /
    • 1992
  • According to the variation of hydrostatic pressure on the central axis of deformable material, the V-shaped central bursting defect may be created in extrusion or drawing processes. The process factors which affect the generation of defects are semi-angle of die, reduction ratio of cross-sectional area, friction factor, material properties and so on. The combination of these factors can determine the possibility of defect creation and the shape of various round holes which have been created inside already. By the rigid plastic finite element method, this paper describes the observations of change in shape of round holes with process conditions such as semi-angle of die, reduction ratio of cross-sectional area and friction factor at the non-steady state of axisymmetrical extrusion process when the round hole is already existed inside the original billet. Also, the effects of process factors are investigated to prevent the possible defects.

  • PDF

자동변속기용 드럼클러치의 유동제어 성형공정 및 실험장치 개발 연구 (A Study on the Flow Control Forming Process and Experiment Device of Drum Clutch for Automatic Transmission)

  • 박종남
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.69-76
    • /
    • 2013
  • This paper presents the development of the FCF method for the manufacturing of final products using numbers related to the minimum amount of work. The utilized product is a drum clutch, which is part of the transmission of an automobile. A double acting press is secured first and a prediction of the forming load on the practical material is made through an experiment with a plasticine model. Also, a finite element simulation using product shape and properties is performed, as well as a press experiment. A double acting press is manufactured that is suitable for a double acting experiment with a conventional hydraulic press(200 tons). A peripheral device for the press is additionally designed for experimental purposes. And, the press has as its essential points the drive speed, stroke control, etc., all of which influence the forming and is modified. Especially, a laser system is used for velocity measurement of two punches. The forming load of a practical material is predicted in order to derive a forming load formula for cold conditions on the basis of approximate similarity theory. Finite element analysis of the relative velocity ratio(RVR), etc., for most suitable flow defect(unfilling, etc.) prevention is achieved as well. The results are verified through a press experiment.

유한요소기법을 이용한 복합재 풍력 블레이드 구조해석 (Structural Analysis of Composite Wind Blade Using Finite Element Technique)

  • 김운성;박경렬;강성민;최용석;정경은;이수민;이경준
    • Tribology and Lubricants
    • /
    • 제40권4호
    • /
    • pp.133-138
    • /
    • 2024
  • This study evaluates the structural safety of wind turbine blades, analyzes the behavior of composite laminate structures with and without defects, and assesses surface erosion wear. The NREL 5 MW standard is applied to assign accurate composite material properties to each blade section. Modeling and analysis of the wind turbine blades reveal stable behavior under individual load conditions (gravity, motor speed, wind speed), with the web bearing most of the load. Surface erosion wear analysis in which microparticle impacts are simulated on the blade coating shows a maximum stress and maximum displacement of 14 MPa and 0.02 mm, respectively, indicating good initial durability, but suggest potential long-term performance issues due to cumulative effects. The study examines defect effects on composite laminate structures to compare the stress distribution, strain, and stiffness characteristics between normal and cracked states. Although normal conditions exhibit stable behavior, crack defects lead to fiber breakage, high-stress concentration in the vulnerable resin layer, and decreased rigidity. This demonstrates that local defects can compromise the safety of the entire structure. The study utilizes finite element analysis to simulate various load scenarios and defect conditions. Results show that even minor defects can significantly alter stress distributions and potentially lead to catastrophic failure if left unaddressed. These findings provide valuable insights for wind turbine blade safety evaluations, surface protection strategies, and composite structure health management. The methodology and results can inform the design improvements, maintenance strategies, and defect detection techniques of the wind energy industry.

Defect-free 4-node flat shell element: NMS-4F element

  • Choi, Chang-Koon;Lee, Phill-Seung;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • 제8권2호
    • /
    • pp.207-231
    • /
    • 1999
  • A versatile 4-node shell element which is useful for the analysis of arbitrary shell structures is presented. The element is developed by flat shell approach, i.e., by combining a membrane element with a Mindlin plate element. The proposed element has six degrees of freedom per node and permits an easy connection to other types of finite elements. In the plate bending part, an improved Mindlin plate has been established by the combined use of the addition of non-conforming displacement modes (N) and the substitute shear strain fields (S). In the membrane part, the nonconforming displacement modes are also added to the displacement fields to improve the behavior of membrane element with drilling degrees of freedom and the modified numerical integration (M) is used to overcome the membrane locking problem. Thus the element is designated as NMS-4F. The rigid link correction technique is adopted to consider the effect of out-of-plane warping. The shell element proposed herein passes the patch tests, does not show any spurious mechanism and does not produce shear and membrane locking phenomena. It is shown that the element produces reliable solutions even for the distorted meshes through the analysis of benchmark problems.

레일의 표면결함크기에 따른 구름접촉수명평가 (Rolling Contact Fatigue Analysis According to Defect Size on Rail)

  • 서정원;권성태;이동형;권석진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.637-642
    • /
    • 2011
  • Rails are subjected to damage from rolling contact fatigue, which leads to defects such as cracks. Rolling contact fatigue damages on the surface of rail such as head check, squats are one of growing problems. Another form of rail surface damage, known as "Ballast imprint" has become apparent. This form of damage is associated with ballast particles becoming trapped between the wheel and the surface of rail. These defects are still one of the key reasons for rail maintenance and replacement. In this study, we have investigated whether the ballast imprint is an initiator of head check type cracks and effect of defect size using Finite element analysis. The FE analysis were used to investigate stresses and strains in subsurface of defects according to variation of defect size. Based on loading cycles obtained from FE analysis, fatigue analysis for each point was carried out.

  • PDF

미소 표면 결함에서 발생하는 초기 균열의 거동에 미치는 응력장의 영향 (The Effects of Stress Fields on Behavior of Primary Cracks Initiated at Micro Surface Defects)

  • 김진봉;김만근
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.25-32
    • /
    • 1999
  • This study has been performed to investigate the stress distribution around defects that behave as stress concentrators. Besides, the effect of stress interaction effects on the initiation of primary cracks were also investigated by rotary bending fatigue tests which were performed with specimens drilled micro surface defects and the stress distribution was analyzed using Finite Element Method. In addition, the stress interaction effects around defects and cracks were investigated by comparing the results of experiments and F.E.M. The results obtained are summarized as follows ; 1) Area which slip and micro cracks initiated at micro surface defects is between the maximum shear stress points and this area is over than ${\pm}30^{\circ}$ from the maximum stress point along the defect edge. 2) The stress interaction effect for the small size defect is larger than that of large size defect when the interval between them is near 3) Interval which there is no shear stress interaction effect analyzed by F.E.M. is larger than that of experimental results.

  • PDF