• 제목/요약/키워드: Deeplabv3+

검색결과 5건 처리시간 0.018초

Semantic crack-image identification framework for steel structures using atrous convolution-based Deeplabv3+ Network

  • Ta, Quoc-Bao;Dang, Ngoc-Loi;Kim, Yoon-Chul;Kam, Hyeon-Dong;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.17-34
    • /
    • 2022
  • For steel structures, fatigue cracks are critical damage induced by long-term cycle loading and distortion effects. Vision-based crack detection can be a solution to ensure structural integrity and performance by continuous monitoring and non-destructive assessment. A critical issue is to distinguish cracks from other features in captured images which possibly consist of complex backgrounds such as handwritings and marks, which were made to record crack patterns and lengths during periodic visual inspections. This study presents a parametric study on image-based crack identification for orthotropic steel bridge decks using captured images with complicated backgrounds. Firstly, a framework for vision-based crack segmentation using the atrous convolution-based Deeplapv3+ network (ACDN) is designed. Secondly, features on crack images are labeled to build three databanks by consideration of objects in the backgrounds. Thirdly, evaluation metrics computed from the trained ACDN models are utilized to evaluate the effects of obstacles on crack detection results. Finally, various training parameters, including image sizes, hyper-parameters, and the number of training images, are optimized for the ACDN model of crack detection. The result demonstrated that fatigue cracks could be identified by the trained ACDN models, and the accuracy of the crack-detection result was improved by optimizing the training parameters. It enables the applicability of the vision-based technique for early detecting tiny fatigue cracks in steel structures.

Gaze-Tracking 기술을 통한 학습 집중력 향상 및 강화 서비스 (Development and Reinforcement for Learning with Gaze-Tracking Technology)

  • 정시열;문태준;이용택;김상엽;김영종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.587-589
    • /
    • 2022
  • 본 서비스는 코로나 19 로 인한 비대면 수업에 따른 학생들의 학업성취도를 증진시키기 위한 것이다. 이를 위해서 비대면 수업동안의 사용자의 시선을 추적하여 몰입도를 분석한다. 사용 기술로는 사용자의 시선을 추적하는데 Gaze-Tracking 기술과 영상에서 수업에 있어 유의미한 영역을 분석하는 deeplabv3 기술을 사용한다. Gaze-Tracking 기술은 웹캠 등을 통하여 사용자가 화면의 어느 부분을 쳐다보고 있는지를 고개, 눈, 눈동자의 각도를 통하여 알아낸다. 해당 기술들을 활용하여 실시간 몰입도를 분석하여 알림을 제공한다. 수업이 종료되고 나서는 마지막에 몰입도 통계를 제공한다. 추가적으로 몰입도 향상을 도와주는 미니게임도 제공한다.

Pixel-based crack image segmentation in steel structures using atrous separable convolution neural network

  • Ta, Quoc-Bao;Pham, Quang-Quang;Kim, Yoon-Chul;Kam, Hyeon-Dong;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • 제9권3호
    • /
    • pp.289-303
    • /
    • 2022
  • In this study, the impact of assigned pixel labels on the accuracy of crack image identification of steel structures is examined by using an atrous separable convolution neural network (ASCNN). Firstly, images containing fatigue cracks collected from steel structures are classified into four datasets by assigning different pixel labels based on image features. Secondly, the DeepLab v3+ algorithm is used to determine optimal parameters of the ASCNN model by maximizing the average mean-intersection-over-union (mIoU) metric of the datasets. Thirdly, the ASCNN model is trained for various image sizes and hyper-parameters, such as the learning rule, learning rate, and epoch. The optimal parameters of the ASCNN model are determined based on the average mIoU metric. Finally, the trained ASCNN model is evaluated by using 10% untrained images. The result shows that the ASCNN model can segment cracks and other objects in the captured images with an average mIoU of 0.716.

직물 이미지 결함 탐지를 위한 딥러닝 기술 연구: 트랜스포머 기반 이미지 세그멘테이션 모델 실험 (Deep Learning Models for Fabric Image Defect Detection: Experiments with Transformer-based Image Segmentation Models)

  • 이현상;하성호;오세환
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권4호
    • /
    • pp.149-162
    • /
    • 2023
  • Purpose In the textile industry, fabric defects significantly impact product quality and consumer satisfaction. This research seeks to enhance defect detection by developing a transformer-based deep learning image segmentation model for learning high-dimensional image features, overcoming the limitations of traditional image classification methods. Design/methodology/approach This study utilizes the ZJU-Leaper dataset to develop a model for detecting defects in fabrics. The ZJU-Leaper dataset includes defects such as presses, stains, warps, and scratches across various fabric patterns. The dataset was built using the defect labeling and image files from ZJU-Leaper, and experiments were conducted with deep learning image segmentation models including Deeplabv3, SegformerB0, SegformerB1, and Dinov2. Findings The experimental results of this study indicate that the SegformerB1 model achieved the highest performance with an mIOU of 83.61% and a Pixel F1 Score of 81.84%. The SegformerB1 model excelled in sensitivity for detecting fabric defect areas compared to other models. Detailed analysis of its inferences showed accurate predictions of diverse defects, such as stains and fine scratches, within intricated fabric designs.

드론 영상으로부터 월동 작물 분류를 위한 의미론적 분할 딥러닝 모델 학습 최적 공간 해상도와 영상 크기 선정 (The Optimal GSD and Image Size for Deep Learning Semantic Segmentation Training of Drone Images of Winter Vegetables)

  • 정동기;이임평
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1573-1587
    • /
    • 2021
  • 드론 영상은 위성이나 항공 영상보다 공간 해상도가 수배 혹은 수십 배가 높은 초고해상도 영상이다. 따라서 드론 영상 기반의 원격탐사는 영상에서 추출하고자 하는 객체의 수준과 처리해야 하는 데이터의 양이 전통적인 원격탐사와 다른 양상을 보인다. 또한, 적용되는 딥러닝(deep learning) 모델의 특성에 따라 모델 훈련에 사용되는 최적의 데이터의 축척과 크기가 달라질 수밖에 없다. 하지만 대부분 연구가 찾고자 하는 객체의 크기, 축척을 반영하는 영상의 공간 해상도, 영상의 크기 등을 고려하지 않고, 관성적으로 적용하고자 하는 모델에서 기존에 사용했던 데이터 명세를 그대로 적용하는 경우가 많다. 본 연구에서는 드론 영상의 공간 해상도, 영상 크기가 6가지 월동채소의 의미론적 분할(semantic segmentation) 딥러닝 모델의 정확도와 훈련 시간에 미치는 영향을 실험 통해 정량적으로 분석하였다. 실험 결과 6가지 월동채소 분할의 평균 정확도는 공간 해상도가 증가함에 따라 증가하지만, 개별 작물에 따라 증가율과 수렴하는 구간이 다르고, 동일 해상도에서 영상의 크기에 따라 정확도와 시간에 큰 차이가 있음을 발견하였다. 특히 각 작물에 따라 최적의 해상도와 영상의 크기가 다름을 알 수 있었다. 연구성과는 향후 드론 영상 데이터를 이용한 월동채소 분할 모델을 개발할 때, 드론 영상의 촬영과 학습 데이터의 제작 효율성 확보를 위한 자료로 활용할 수 있을 것이다.