• Title/Summary/Keyword: Deepfake Detection

Search Result 10, Processing Time 0.024 seconds

Cascaded-Hop For DeepFake Videos Detection

  • Zhang, Dengyong;Wu, Pengjie;Li, Feng;Zhu, Wenjie;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1671-1686
    • /
    • 2022
  • Face manipulation tools represented by Deepfake have threatened the security of people's biological identity information. Particularly, manipulation tools with deep learning technology have brought great challenges to Deepfake detection. There are many solutions for Deepfake detection based on traditional machine learning and advanced deep learning. However, those solutions of detectors almost have problems of poor performance when evaluated on different quality datasets. In this paper, for the sake of making high-quality Deepfake datasets, we provide a preprocessing method based on the image pixel matrix feature to eliminate similar images and the residual channel attention network (RCAN) to resize the scale of images. Significantly, we also describe a Deepfake detector named Cascaded-Hop which is based on the PixelHop++ system and the successive subspace learning (SSL) model. By feeding the preprocessed datasets, Cascaded-Hop achieves a good classification result on different manipulation types and multiple quality datasets. According to the experiment on FaceForensics++ and Celeb-DF, the AUC (area under curve) results of our proposed methods are comparable to the state-of-the-art models.

A Comparative Study on Deepfake Detection using Gray Channel Analysis (Gray 채널 분석을 사용한 딥페이크 탐지 성능 비교 연구)

  • Son, Seok Bin;Jo, Hee Hyeon;Kang, Hee Yoon;Lee, Byung Gul;Lee, Youn Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.9
    • /
    • pp.1224-1241
    • /
    • 2021
  • Recent development of deep learning techniques for image generation has led to straightforward generation of sophisticated deepfakes. However, as a result, privacy violations through deepfakes has also became increased. To solve this issue, a number of techniques for deepfake detection have been proposed, which are mainly focused on RGB channel-based analysis. Although existing studies have suggested the effectiveness of other color model-based analysis (i.e., Grayscale), their effectiveness has not been quantitatively validated yet. Thus, in this paper, we compare the effectiveness of Grayscale channel-based analysis with RGB channel-based analysis in deepfake detection. Based on the selected CNN-based models and deepfake datasets, we measured the performance of each color model-based analysis in terms of accuracy and time. The evaluation results confirmed that Grayscale channel-based analysis performs better than RGB-channel analysis in several cases.

CoNSIST : Consist of New methodologies on AASIST, leveraging Squeeze-and-Excitation, Positional Encoding, and Re-formulated HS-GAL

  • Jae-Hoon Ha;Joo-Won Mun;Sang-Yup Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.692-695
    • /
    • 2024
  • With the recent advancements in artificial intelligence (AI), the performance of deep learning-based audio deepfake technology has significantly improved. This technology has been exploited for criminal activities, leading to various cases of victimization. To prevent such illicit outcomes, this paper proposes a deep learning-based audio deepfake detection model. In this study, we propose CoNSIST, an improved audio deepfake detection model, which incorporates three additional components into the graph-based end-to-end model AASIST: (i) Squeeze and Excitation, (ii) Positional Encoding, and (iii) Reformulated HS-GAL, This incorporation is expected to enable more effective feature extraction, elimination of unnecessary operations, and consideration of more diverse information, thereby improving the performance of the original AASIST. The results of multiple experiments indicate that CoNSIST has enhanced the performance of audio deepfake detection compared to existing models.

Blockchain Technology for Combating Deepfake and Protect Video/Image Integrity

  • Rashid, Md Mamunur;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1044-1058
    • /
    • 2021
  • Tempered electronic contents have multiplied in last few years, thanks to the emergence of sophisticated artificial intelligence(AI) algorithms. Deepfakes (fake footage, photos, speech, and videos) can be a frightening and destructive phenomenon that has the capacity to distort the facts and hamper reputation by presenting a fake reality. Evidence of ownership or authentication of digital material is crucial for combating the fabricated content influx we are facing today. Current solutions lack the capacity to track digital media's history and provenance. Due to the rise of misrepresentation created by technologies like deepfake, detection algorithms are required to verify the integrity of digital content. Many real-world scenarios have been claimed to benefit from blockchain's authentication capabilities. Despite the scattered efforts surrounding such remedies, relatively little research has been undertaken to discover where blockchain technology can be used to tackle the deepfake problem. Latest blockchain based innovations such as Smart Contract, Hyperledger fabric can play a vital role against the manipulation of digital content. The goal of this paper is to summarize and discuss the ongoing researches related to blockchain's capabilities to protect digital content authentication. We have also suggested a blockchain (smart contract) dependent framework that can keep the data integrity of original content and thus prevent deepfake. This study also aims at discussing how blockchain technology can be used more effectively in deepfake prevention as well as highlight the current state of deepfake video detection research, including the generating process, various detection algorithms, and existing benchmarks.

Deepfake Detection using Supervised Temporal Feature Extraction model and LSTM (지도 학습한 시계열적 특징 추출 모델과 LSTM을 활용한 딥페이크 판별 방법)

  • Lee, Chunghwan;Kim, Jaihoon;Yoon, Kijung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.91-94
    • /
    • 2021
  • As deep learning technologies becoming developed, realistic fake videos synthesized by deep learning models called "Deepfake" videos became even more difficult to distinguish from original videos. As fake news or Deepfake blackmailing are causing confusion and serious problems, this paper suggests a novel model detecting Deepfake videos. We chose Residual Convolutional Neural Network (Resnet50) as an extraction model and Long Short-Term Memory (LSTM) which is a form of Recurrent Neural Network (RNN) as a classification model. We adopted cosine similarity with hinge loss to train our extraction model in embedding the features of Deepfake and original video. The result in this paper demonstrates that temporal features in the videos are essential for detecting Deepfake videos.

  • PDF

A Method of Detection of Deepfake Using Bidirectional Convolutional LSTM (Bidirectional Convolutional LSTM을 이용한 Deepfake 탐지 방법)

  • Lee, Dae-hyeon;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1053-1065
    • /
    • 2020
  • With the recent development of hardware performance and artificial intelligence technology, sophisticated fake videos that are difficult to distinguish with the human's eye are increasing. Face synthesis technology using artificial intelligence is called Deepfake, and anyone with a little programming skill and deep learning knowledge can produce sophisticated fake videos using Deepfake. A number of indiscriminate fake videos has been increased significantly, which may lead to problems such as privacy violations, fake news and fraud. Therefore, it is necessary to detect fake video clips that cannot be discriminated by a human eyes. Thus, in this paper, we propose a deep-fake detection model applied with Bidirectional Convolution LSTM and Attention Module. Unlike LSTM, which considers only the forward sequential procedure, the model proposed in this paper uses the reverse order procedure. The Attention Module is used with a Convolutional neural network model to use the characteristics of each frame for extraction. Experiments have shown that the model proposed has 93.5% accuracy and AUC is up to 50% higher than the results of pre-existing studies.

Improving the Robustness of Deepfake Detection Models Against Adversarial Attacks (적대적 공격에 따른 딥페이크 탐지 모델 강화)

  • Lee, Sangyeong;Hou, Jong-Uk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.724-726
    • /
    • 2022
  • 딥페이크(deepfake)로 인한 디지털 범죄는 날로 교묘해지면서 사회적으로 큰 파장을 불러일으키고 있다. 이때, 딥러닝 기반 모델의 오류를 발생시키는 적대적 공격(adversarial attack)의 등장으로 딥페이크를 탐지하는 모델의 취약성이 증가하고 있고, 이는 매우 치명적인 결과를 초래한다. 본 연구에서는 2 가지 방법을 통해 적대적 공격에도 영향을 받지 않는 강인한(robust) 모델을 구축하는 것을 목표로 한다. 모델 강화 기법인 적대적 학습(adversarial training)과 영상처리 기반 방어 기법인 크기 변환(resizing), JPEG 압축을 통해 적대적 공격에 대한 강인성을 입증한다.

Deepfake Detection with Mesoscopic Network (Mesoscopic Network를 이용한 딥페이크 감지 기법)

  • Lee, Hyeri;Yang, Huigyu;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.652-654
    • /
    • 2022
  • 소셜 미디어와 스마트폰의 대중화로 인해 디지털 이미지와 비디오를 만들어 내는 일이 매우 흔해졌다. 전통적인 이미지 포렌식 기술 압축 방법은 데이터를 손상시킨다는 점에서 비디오에 적용하기 부적절하다. 따라서 본 논문에서는 딥러닝과 MesoNet을 이용한 모델을 통해 참 혹은 거짓만 나타내는 기존의 결과 산출 방법에서 더 나아가 네가지의 분류 방법으로 딥페이크 감지 흐름을 살펴보고자 한다.

Deepfake Detection with Audio Fragile Watermarking (연성 워터마킹 기반 오디오 딥페이크 탐지)

  • Jun-Mo Kim;Changhee Hahn
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.269-270
    • /
    • 2024
  • 디지털 오디오 파일의 보안은 디지털 미디어의 확산과 함께 점차 중요해지고 있다. 특히, 딥페이크와 같은 기술을 이용한 조작이 증가함에 따라, 이를 효과적으로 방지하는 기술이 대두되고 있다. 본 연구에서는 연성 워터마킹 기술을 활용하여, 오디오 파일이 외부 조작에 의해 변경되었을 때 오디오 파일이 의도적으로 파괴하는 방식을 제안한다. 본 논문에서는 연성 워터마크 생성 및 삽입 방법에 관한 자세한 설명을 하고, 연성 워터마킹을 통해 오디오의 변조 여부를 즉각적으로 탐지하는데 어떻게 기여하는지를 보여준다. 제안 기법은 오디오 원본의 무결성을 효과적으로 보호하는 새로운 방법을 제시하며, 디지털 미디어 보안을 강화하는데 중요한 역할을 할 것으로 기대된다.

Comparison Analysis of Four Face Swapping Models for Interactive Media Platform COX (인터랙티브 미디어 플랫폼 콕스에 제공될 4가지 얼굴 변형 기술의 비교분석)

  • Jeon, Ho-Beom;Ko, Hyun-kwan;Lee, Seon-Gyeong;Song, Bok-Deuk;Kim, Chae-Kyu;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.535-546
    • /
    • 2019
  • Recently, there have been a lot of researches on the whole face replacement system, but it is not easy to obtain stable results due to various attitudes, angles and facial diversity. To produce a natural synthesis result when replacing the face shown in the video image, technologies such as face area detection, feature extraction, face alignment, face area segmentation, 3D attitude adjustment and facial transposition should all operate at a precise level. And each technology must be able to be interdependently combined. The results of our analysis show that the difficulty of implementing the technology and contribution to the system in facial replacement technology has increased in facial feature point extraction and facial alignment technology. On the other hand, the difficulty of the facial transposition technique and the three-dimensional posture adjustment technique were low, but showed the need for development. In this paper, we propose four facial replacement models such as 2-D Faceswap, OpenPose, Deekfake, and Cycle GAN, which are suitable for the Cox platform. These models have the following features; i.e. these models include a suitable model for front face pose image conversion, face pose image with active body movement, and face movement with right and left side by 15 degrees, Generative Adversarial Network.