• 제목/요약/키워드: DeepLabV3+

검색결과 35건 처리시간 0.023초

고 에너지 전자빔 조사에 따른 ZnO 기판의 결함생성 및 전기적 특성 변화 (Electrical Properties and Defect States in ZnO Substrates Irradiated by MeV Electron-beam)

  • 이동욱;송후영;한동석;김선필;김은규;이병철
    • 한국진공학회지
    • /
    • 제19권3호
    • /
    • pp.199-205
    • /
    • 2010
  • 수열합성법(hydrothermal) 방식으로 성장한 ZnO 기판에 고에너지의 전자빔을 조사시킨 후 쇼트키(Schottky)다이오드를 제작하여 결함상태와 전기적 특성 변화를 조사하였다. 1 MeV 및 2 MeV 전자빔으로 $1{\times}10^{16}$ electrons/$cm^2$ dose로 기판의 Zn 면에 조사하였다. 1 MeV 전자빔이 조사된 시료에서는 표면에 전자빔 유도결함을 형성시켜 누설전류를 증가시켰고, 2 MeV 전자빔의 경우는 오히려 다이오드 누설절류 감소와 on/off 특성을 향상시키는 것으로 나타났다. 이들 시료에 대한 DLTS (deep level transient spectroscopy) 측정결과 전자빔 조사에 따른 전기적 물성변화는 활성화에너지와 포획단면적이 각각 $E_c$-0.33 eV 및 $2.97{\times}10^{15}\;cm^{-2}$인 O-vacancy가 주된 연관성을 보였으며, 활성화에너지 $E_v$+0.8 eV인 결함상태도 새롭게 완성되었다.

DeepLabV3+와 Swin Transformer 모델을 이용한 Sentinel-2 영상의 구름탐지 (Cloud Detection from Sentinel-2 Images Using DeepLabV3+ and Swin Transformer Models)

  • 강종구;박강현;김근아;윤유정;최소연;이양원
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1743-1747
    • /
    • 2022
  • Sentinel-2는 분광파장대나 공간해상도 측면에서 우리나라 차세대중형위성 4호(농림위성)의 모의영상으로 활용될 수 있다. 이 단보에서는 향후 농림위성영상에 적용하기 위한 예비실험으로, 딥러닝 기술을 이용한 Sentinel-2 영상의 구름탐지를 수행하였다. 전통적인 Convolutional Neural Network (CNN) 모델인 DeepLabV3+와 최신의 Transformer 모델인 Shifted Windows (Swin) Transformer를 이용한 구름탐지 모델을 구축하고, Radiant Earth Foundation (REF)에서 제공하는 22,728장의 학습자료에 대한 암맹평가를 실시하였다. Swin Transformer 모델은 0.886의 정밀도와 0.875의 재현율로, 과탐지와 미탐지가 어느 한쪽으로 치우치지 않는 경향을 보였다. 딥러닝 기반 구름탐지는 향후 우리나라 중심의 실험을 거쳐 농림위성 영상에 활용될 수 있을 것으로 기대된다.

심층신경망을 이용한 스마트 양식장용 어류 크기 자동 측정 시스템 (Automatic Fish Size Measurement System for Smart Fish Farm Using a Deep Neural Network)

  • 이윤호;전주현;주문갑
    • 대한임베디드공학회논문지
    • /
    • 제17권3호
    • /
    • pp.177-183
    • /
    • 2022
  • To measure the size and weight of the fish, we developed an automatic fish size measurement system using a deep neural network, where the YOLO (You Only Look Once)v3 model was used. To detect fish, an IP camera with infrared function was installed over the fish pool to acquire image data and used as input data for the deep neural network. Using the bounding box information generated as a result of detecting the fish and the structure for which the actual length is known, the size of the fish can be obtained. A GUI (Graphical User Interface) program was implemented using LabVIEW and RTSP (Real-Time Streaming protocol). The automatic fish size measurement system shows the results and stores them in a database for future work.

Hot Spot Detection of Thermal Infrared Image of Photovoltaic Power Station Based on Multi-Task Fusion

  • Xu Han;Xianhao Wang;Chong Chen;Gong Li;Changhao Piao
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.791-802
    • /
    • 2023
  • The manual inspection of photovoltaic (PV) panels to meet the requirements of inspection work for large-scale PV power plants is challenging. We present a hot spot detection and positioning method to detect hot spots in batches and locate their latitudes and longitudes. First, a network based on the YOLOv3 architecture was utilized to identify hot spots. The innovation is to modify the RU_1 unit in the YOLOv3 model for hot spot detection in the far field of view and add a neural network residual unit for fusion. In addition, because of the misidentification problem in the infrared images of the solar PV panels, the DeepLab v3+ model was adopted to segment the PV panels to filter out the misidentification caused by bright spots on the ground. Finally, the latitude and longitude of the hot spot are calculated according to the geometric positioning method utilizing known information such as the drone's yaw angle, shooting height, and lens field-of-view. The experimental results indicate that the hot spot recognition rate accuracy is above 98%. When keeping the drone 25 m off the ground, the hot spot positioning error is at the decimeter level.

Hair Segmentation using Optimized Fully Connected Network and 3D Hair Style

  • Kim, Junghyun;Lee, Yunhwan;Chin, Seongah
    • International Journal of Advanced Culture Technology
    • /
    • 제9권4호
    • /
    • pp.385-391
    • /
    • 2021
  • 3D modeling of the human body is an integral part of computer graphics. Among them, several studies have been conducted on hair modeling, but there are generally few studies that effectively implement hair and face modeling simultaneously. This study has the originality of providing users with customized face modeling and hair modeling that is different from previous studies. For realistic hair styling, We design and realize hair segmentation using FCN, and we select the most appropriate model through comparing PSPNet, DeepLab V3+, and MobileNet. In this study, we use the open dataset named Figaro1k. Through the analysis of iteration and epoch parameters, we reach the optimized values of them. In addition, we experiment external parameters about the location of the camera, the color of the lighting, and the presence or absence of accessories. And the environmental analysis factors of the avatar maker were set and solutions to problems derived during the analysis process were presented.

UAV 항공 영상에서의 딥러닝 기반 잣송이 검출 (Deep Learning Based Pine Nut Detection in UAV Aerial Video)

  • 김규민;박성준;황승준;김희영;백중환
    • 한국항행학회논문지
    • /
    • 제25권1호
    • /
    • pp.115-123
    • /
    • 2021
  • 잣은 우리나라 대표적인 견과류 임산물이자 수익형 작물이다. 그러나 잣송이는 사람이 직접 나무 위로 올라가 수확하기 때문에 위험성이 높다. 이러한 문제를 해결하기 위해서 로봇 또는 UAV(unmanned aerial vehicle)를 이용한 잣송이 수확이 필요하다. 본 논문에서는 UAV를 이용한 잣송이 수확을 위해 UAV 항공 영상에서 딥러닝(deep learning) 기반의 잣송이 검출 기법을 제안한다. 이를 위해, UAV를 이용하여 실제 잣나무 숲에서 동영상을 촬영했으며, 적은 수의 데이터 보완을 위해 데이터 증강기법을 사용했다. 3D 검출을 위한 데이터로는 Unity3D을 이용하여 가상 잣송이 및 가상환경을 3D 모델링 하였으며 라벨링은 좌표계의 3차원 변환법을 이용해 구축했다. 잣 분포 영역 검출, 잣 객체에 대한 2D 및 3D 검출을 위한 딥러닝 알고리즘은 DeepLabV3, YOLOv4, CenterNet을 각각 이용하였다. 실험 결과, 잣송이 분포 영역 검출률은 82.15%, 2D 검출률은 86.93%, 3D 검출률은 59.45%이었다.

딥러닝 기반 옥수수 포장의 잡초 면적 평가 (Deep Learning Approaches for Accurate Weed Area Assessment in Maize Fields)

  • 박혁진;권동원;상완규;반호영;장성율;백재경;이윤호;임우진;서명철;조정일
    • 한국농림기상학회지
    • /
    • 제25권1호
    • /
    • pp.17-27
    • /
    • 2023
  • 포장에서 잡초의 발생은 농작물의 생산량을 크게 떨어트리는 원인 중 하나이고 SSWM을 기반으로 잡초를 변량 방제하기 위해서 잡초의 발생 위치, 밀도 그리고 이를 정량화하는 것은 필수적이다. 본 연구에서는 2020년의 국립식량과학원에서 잡초 피해를 입은 옥수수 포장의 영상데이터를 무인항공기를 활용해서 수집하였고 이를 배경과 옥수수로 분리하여 딥러닝 기반 영상 분할 모델 제작을 위한 학습데이터를 획득하였다. DeepLabV3+, U-Net, Linknet, FPN의 4가지의 영상 분할 네트워크들의 옥수수의 검출 정확도를 평가하기 위해 픽셀정확도, mIOU, 정밀도, 재현성의 지표를 활용해서 정확도를 검증하였다. 검증 결과 DeepLabV3+ 모델이 0.76으로 가장 높은 mIOU를 나타냈고, 해당 모델과 식물체의 녹색 영역과 배경을 분리하는 지수인 ExGR을 활용해서 잡초의 면적을 정량화, 시각화하였다. 이러한 연구의 결과는 무인항공기로 촬영된 영상을 활용해서 넓은 면적의 옥수수 포장에서 빠르게 잡초의 위치와 밀도를 특정하고 정량화하는 것으로 잡초의 밀도에 따른 제초제의 변량 방제를 위한 의사결정에 도움이 될 것으로 기대한다.

딥-러닝을 활용한 안드로이드 플랫폼에서의 이미지 시맨틱 분할 구현 (Implementation of Image Semantic Segmentation on Android Device using Deep Learning)

  • 이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.88-91
    • /
    • 2020
  • Image segmentation is the task of partitioning an image into multiple sets of pixels based on some characteristics. The objective is to simplify the image into a representation that is more meaningful and easier to analyze. In this paper, we apply deep-learning to pre-train the learning model, and implement an algorithm that performs image segmentation in real time by extracting frames for the stream input from the Android device. Based on the open source of DeepLab-v3+ implemented in Tensorflow, some convolution filters are modified to improve real-time operation on the Android platform.

Automatic crack detection of dam concrete structures based on deep learning

  • Zongjie Lv;Jinzhang Tian;Yantao Zhu;Yangtao Li
    • Computers and Concrete
    • /
    • 제32권6호
    • /
    • pp.615-623
    • /
    • 2023
  • Crack detection is an essential method to ensure the safety of dam concrete structures. Low-quality crack images of dam concrete structures limit the application of neural network methods in crack detection. This research proposes a modified attentional mechanism model to reduce the disturbance caused by uneven light, shadow, and water spots in crack images. Also, the focal loss function solves the small ratio of crack information. The dataset collects from the network, laboratory and actual inspection dataset of dam concrete structures. This research proposes a novel method for crack detection of dam concrete structures based on the U-Net neural network, namely AF-UNet. A mutual comparison of OTSU, Canny, region growing, DeepLab V3+, SegFormer, U-Net, and AF-UNet (proposed) verified the detection accuracy. A binocular camera detects cracks in the experimental scene. The smallest measurement width of the system is 0.27 mm. The potential goal is to achieve real-time detection and localization of cracks in dam concrete structures.

A Photometric Study of the Young Open Cluster IC 1805

  • Sung, Hwankyung;Lim, Beomdu;Bessell, M.S.;Hur, Hyeonoh;Yi, Jonghyuk;Chun, Moo-Young
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.41.2-41.2
    • /
    • 2015
  • We have performed deep wide-field CCD photometry of the young open cluster IC 1805 in the famous star forming region W4, and obtained photometric data for more than 91,000 stars in the field of IC 1805 based on observations with the 3.6m CFHT and the AZT-22 1.5m telescope at Maidanak Astronomical Observatory in Uzbekistan. The photometric data cover an area $43^{\prime}{\times}45^{\prime}$ which is far larger and far deeper than any other optical observations made for the cluster. In order to select the young stellar objects with mid-IR excess emission, we have performed mid-IR photometry of the cluster using the archival images obtained with the Spitzer Space Telescope IRAC and MIPS instruments. From a preliminary analysis of the data, we determined the reddening law ($R_V=3.02{\pm}0.05$), distance modulus ($V_0-M_V=11.9{\pm}0.2$), and the spatial distribution of members.

  • PDF