• 제목/요약/키워드: DeepLab

검색결과 194건 처리시간 0.028초

UNDERGROUND WATER PROBLEMS IN DEEP EXCAVATION CONSTRVCTION CONTROL AGAINST BOILING FAILURE IN DEEP EXCAVATION IN SANDY GROUND BY FIELD MONITORING

  • Iwasaki, Yoahinori
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1990년도 PROCEEDINGS OF THE FIRST KOREA-JAPAN JOINT GEOTECHNICAL SEMINAR ON EXCAVATION and TUNNELING IN URBAN AREAS
    • /
    • pp.97-110
    • /
    • 1990
  • This paper presents a case history of a deep open cut excavation of Nakagawa section for Futuoka Subway construction which adopted observational mettled against boiling failure and completed with success by modifying construction based upon field monitoring. One of the difficult conditions for the excavation was sandy layer with high water pressure which was anticipated boiling failure. The boiling was generally considered as one of the difficult phenomena to work with the observational method because of its unpredictable catastrophic nature. Laboratory experiments showed the existence of the prefailure movements of the ground and the possibility of the application of the observational method against the boiling failure. Construction step was planned to be modified, if necessary, based upon field monitoring and was completed with success.

  • PDF

Automatic crack detection of dam concrete structures based on deep learning

  • Zongjie Lv;Jinzhang Tian;Yantao Zhu;Yangtao Li
    • Computers and Concrete
    • /
    • 제32권6호
    • /
    • pp.615-623
    • /
    • 2023
  • Crack detection is an essential method to ensure the safety of dam concrete structures. Low-quality crack images of dam concrete structures limit the application of neural network methods in crack detection. This research proposes a modified attentional mechanism model to reduce the disturbance caused by uneven light, shadow, and water spots in crack images. Also, the focal loss function solves the small ratio of crack information. The dataset collects from the network, laboratory and actual inspection dataset of dam concrete structures. This research proposes a novel method for crack detection of dam concrete structures based on the U-Net neural network, namely AF-UNet. A mutual comparison of OTSU, Canny, region growing, DeepLab V3+, SegFormer, U-Net, and AF-UNet (proposed) verified the detection accuracy. A binocular camera detects cracks in the experimental scene. The smallest measurement width of the system is 0.27 mm. The potential goal is to achieve real-time detection and localization of cracks in dam concrete structures.

딥러닝 기반 옥수수 포장의 잡초 면적 평가 (Deep Learning Approaches for Accurate Weed Area Assessment in Maize Fields)

  • 박혁진;권동원;상완규;반호영;장성율;백재경;이윤호;임우진;서명철;조정일
    • 한국농림기상학회지
    • /
    • 제25권1호
    • /
    • pp.17-27
    • /
    • 2023
  • 포장에서 잡초의 발생은 농작물의 생산량을 크게 떨어트리는 원인 중 하나이고 SSWM을 기반으로 잡초를 변량 방제하기 위해서 잡초의 발생 위치, 밀도 그리고 이를 정량화하는 것은 필수적이다. 본 연구에서는 2020년의 국립식량과학원에서 잡초 피해를 입은 옥수수 포장의 영상데이터를 무인항공기를 활용해서 수집하였고 이를 배경과 옥수수로 분리하여 딥러닝 기반 영상 분할 모델 제작을 위한 학습데이터를 획득하였다. DeepLabV3+, U-Net, Linknet, FPN의 4가지의 영상 분할 네트워크들의 옥수수의 검출 정확도를 평가하기 위해 픽셀정확도, mIOU, 정밀도, 재현성의 지표를 활용해서 정확도를 검증하였다. 검증 결과 DeepLabV3+ 모델이 0.76으로 가장 높은 mIOU를 나타냈고, 해당 모델과 식물체의 녹색 영역과 배경을 분리하는 지수인 ExGR을 활용해서 잡초의 면적을 정량화, 시각화하였다. 이러한 연구의 결과는 무인항공기로 촬영된 영상을 활용해서 넓은 면적의 옥수수 포장에서 빠르게 잡초의 위치와 밀도를 특정하고 정량화하는 것으로 잡초의 밀도에 따른 제초제의 변량 방제를 위한 의사결정에 도움이 될 것으로 기대한다.

Hot Spot Detection of Thermal Infrared Image of Photovoltaic Power Station Based on Multi-Task Fusion

  • Xu Han;Xianhao Wang;Chong Chen;Gong Li;Changhao Piao
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.791-802
    • /
    • 2023
  • The manual inspection of photovoltaic (PV) panels to meet the requirements of inspection work for large-scale PV power plants is challenging. We present a hot spot detection and positioning method to detect hot spots in batches and locate their latitudes and longitudes. First, a network based on the YOLOv3 architecture was utilized to identify hot spots. The innovation is to modify the RU_1 unit in the YOLOv3 model for hot spot detection in the far field of view and add a neural network residual unit for fusion. In addition, because of the misidentification problem in the infrared images of the solar PV panels, the DeepLab v3+ model was adopted to segment the PV panels to filter out the misidentification caused by bright spots on the ground. Finally, the latitude and longitude of the hot spot are calculated according to the geometric positioning method utilizing known information such as the drone's yaw angle, shooting height, and lens field-of-view. The experimental results indicate that the hot spot recognition rate accuracy is above 98%. When keeping the drone 25 m off the ground, the hot spot positioning error is at the decimeter level.

3차원 전도체의 공간적 위치 및 크기에 따른 차이 지시자의 특성 연구 (A study on the characteristics of difference arrow using three-dimensional MT(Magneto-Telluric) modeling)

  • 양준모;오석훈;이덕기;권병두;윤용훈
    • 지구물리
    • /
    • 제5권4호
    • /
    • pp.305-319
    • /
    • 2002
  • 지자기수직탐사(GDS; Geomagnetic Depth Sounding)에서의 차이 지시자(difference arrow)의 유용성을 조사하기 위하여 3차원 MT(Magneto-Telluric)모델링을 수행하였다. 본 연구에서는 3차원 전도체와 해양의 공간적 위치 및 전도체의 크기에 따른 차이 지시자의 특성을 조사하였다. 전도체가 지표에 존재할 때 본 연구에서 사용된 모델의 경우 사용된 주기가 장주기(40분 이상)거나 해양과의 거리가 멀어지면(150 km 이상) 상호결합이 무시할 정도로 약해 차이 지시자가 유의미하였다. 그러나 전도체가 심부에 매몰된 경우 차이 지시자의 유용성은 그 크기에 의존적이며 전도체가 충분히 큰 경우 상호결합이 장주기까지 영향을 미칠 수 있다는 가능성을 확인하였다. 또한 수직적으로 확장된 전도체의 경우 전 주기에서 상호결합이 강화되어 장주기에서도 차이 지시자의 유용성을 확신할 수 없었다. 따라서 획득된 유도 지시자로부터 해양처럼 이미 알고 있는 전도체의 효과를 제거하기 위해서는 전도체 간의 상호 결합에 대한 정보가 요구되며 유용성이 확인된 차이 지시자는 물리적 지지를 바탕으로 지하 구조에 대한 정보를 제공할 것이다.

  • PDF

시간에 따라 변화하는 빗줄기 장면을 이용한 딥러닝 기반 비지도 학습 빗줄기 제거 기법 (Deep Unsupervised Learning for Rain Streak Removal using Time-varying Rain Streak Scene)

  • 조재훈;장현성;하남구;이승하;박성순;손광훈
    • 한국멀티미디어학회논문지
    • /
    • 제22권1호
    • /
    • pp.1-9
    • /
    • 2019
  • Single image rain removal is a typical inverse problem which decomposes the image into a background scene and a rain streak. Recent works have witnessed a substantial progress on the task due to the development of convolutional neural network (CNN). However, existing CNN-based approaches train the network with synthetically generated training examples. These data tend to make the network bias to the synthetic scenes. In this paper, we present an unsupervised framework for removing rain streaks from real-world rainy images. We focus on the natural phenomena that static rainy scenes capture a common background but different rain streak. From this observation, we train siamese network with the real rain image pairs, which outputs identical backgrounds from the pairs. To train our network, a real rainy dataset is constructed via web-crawling. We show that our unsupervised framework outperforms the recent CNN-based approaches, which are trained by supervised manner. Experimental results demonstrate that the effectiveness of our framework on both synthetic and real-world datasets, showing improved performance over previous approaches.

ManiFL : 얕은 학습 기반의 더 나은 자연어처리 도구 (ManiFL : A Better Natural-Language-Processing Tool Based On Shallow-Learning)

  • 신준철;김완수;이주상;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.311-315
    • /
    • 2021
  • 근래의 자연어처리 분야에서는 잘 만들어진 도구(Library)를 이용하여 생산성 높은 개발과 연구가 활발하게 이뤄지고 있다. 이 중에 대다수는 깊은 학습(Deep-Learning, 딥러닝) 기반인데, 이런 모델들은 학습 속도가 느리고, 비용이 비싸고, 사용(Run-Time) 속도도 느리다. 이뿐만 아니라 라벨(Label)의 가짓수가 굉장히 많거나, 라벨의 구성이 단어마다 달라질 수 있는 의미분별(동형이의어, 다의어 번호 태깅) 분야에서 딥러닝은 굉장히 비효율적인 문제가 있다. 이런 문제들은 오히려 기존의 얕은 학습(Shallow-Learning)기반 모델에서는 없던 것들이지만, 최근의 연구경향에서 딥러닝 비중이 급격히 증가하면서, 멀티스레딩 같은 고급 기능들을 지원하는 얕은 학습 기반 언어모델이 새로이 개발되지 않고 있었다. 본 논문에서는 학습과 태깅 모두에서 멀티스레딩을 지원하고, 딥러닝에서 연구된 드롭아웃 기법이 구현된 자연어처리 도구인 혼합 자질 가변 표지기 ManiFL(Manifold Feature Labelling : ManiFL)을 소개한다. 본 논문은 실험을 통해서 ManiFL로 다의어태깅이 가능함을 보여주고, 딥러닝과 CRFsuite에서 높은 성능을 보여주는 개체명 인식에서도 비교할만한 성능이 나옴을 보였다.

  • PDF

심층신경망 모델을 이용한 대기오염망 자료확정 알고리즘 연구 (A Study on the Air Pollution Monitoring Network Algorithm Using Deep Learning)

  • 이선우;양호준;이문형;최정무;윤세환;권장우;박지훈;정동희;신혜정
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.57-65
    • /
    • 2021
  • 본 논문은 딥 러닝(Deep Learning)을 이용하여 대기오염측정망 데이터 중 특정 증상이 나타나는 이상 데이터를 탐지하는 방법을 제시한다. 기존 방법들은 일반적으로 시계열 데이터 내에서 기존과는 다른 특이한 패턴이 나타나는 데이터를 탐지하여 이상치로 분류하며, 이는 특정 증상만을 탐지하기에는 적합하지 않다. 본 논문에서는 주로 이미지의 전경 분리(Sementic Segmentation)에 사용되는 DeepLab V3+ 모델의 2차원 합성곱 신경망 구조를 1차원 구조로 변형하여 이미지 대신 여러 센서의 시계열 측정값을 입력받고 특정 증상이 나타나는 데이터를 탐지하도록 하는 방법을 제시한다. 또한, 데이터에 '조각별 집계 근사법(Piecewise Aggregate Approximation)'을 적용하여 잡음이 많은 대기오염측정망 데이터의 복잡도를 줄임으로써 성능을 높인다. 실험 결과를 통해 준수한 성능으로 이상치 탐지를 수행할 수 있음을 확인할 수 있다.

UAV 항공 영상에서의 딥러닝 기반 잣송이 검출 (Deep Learning Based Pine Nut Detection in UAV Aerial Video)

  • 김규민;박성준;황승준;김희영;백중환
    • 한국항행학회논문지
    • /
    • 제25권1호
    • /
    • pp.115-123
    • /
    • 2021
  • 잣은 우리나라 대표적인 견과류 임산물이자 수익형 작물이다. 그러나 잣송이는 사람이 직접 나무 위로 올라가 수확하기 때문에 위험성이 높다. 이러한 문제를 해결하기 위해서 로봇 또는 UAV(unmanned aerial vehicle)를 이용한 잣송이 수확이 필요하다. 본 논문에서는 UAV를 이용한 잣송이 수확을 위해 UAV 항공 영상에서 딥러닝(deep learning) 기반의 잣송이 검출 기법을 제안한다. 이를 위해, UAV를 이용하여 실제 잣나무 숲에서 동영상을 촬영했으며, 적은 수의 데이터 보완을 위해 데이터 증강기법을 사용했다. 3D 검출을 위한 데이터로는 Unity3D을 이용하여 가상 잣송이 및 가상환경을 3D 모델링 하였으며 라벨링은 좌표계의 3차원 변환법을 이용해 구축했다. 잣 분포 영역 검출, 잣 객체에 대한 2D 및 3D 검출을 위한 딥러닝 알고리즘은 DeepLabV3, YOLOv4, CenterNet을 각각 이용하였다. 실험 결과, 잣송이 분포 영역 검출률은 82.15%, 2D 검출률은 86.93%, 3D 검출률은 59.45%이었다.

CAM과 비트 분리 문자열 매처를 이용한 DPI를 위한 2단의 문자열 매칭 엔진의 개발 (A Memory-Efficient Two-Stage String Matching Engine Using both Content-Addressable Memory and Bit-split String Matchers for Deep Packet Inspection)

  • 김현진;최강일
    • 한국통신학회논문지
    • /
    • 제39B권7호
    • /
    • pp.433-439
    • /
    • 2014
  • 본 논문은 DPI (deep packet insepction)를 위한 CAM (content-addressable memory)과 병렬의 비트 분리(bit-split) 문자열 매처(matcher)를 이용한 2단의 문자열 매칭 엔진의 구조를 제안한다. 긴 타겟 패턴은 같은 길이의 서브 패턴으로 잘라지게 되고, 각 서브패턴은 1단의 CAM에 매핑된다. CAM으로부터의 매칭 인덱스의 시퀀스를 사용하여 2단에서 긴 패턴의 매칭 여부를 알 수 있다. CAM과 비트 분리 문자열 매처를 사용하여 이 기종의 메모리를 사용했을 경우에 메모리 요구량을 크게 줄일 수 있다.