• Title/Summary/Keyword: DeepLab

Search Result 186, Processing Time 0.031 seconds

A Study on Model for Drivable Area Segmentation based on Deep Learning (딥러닝 기반의 주행가능 영역 추출 모델에 관한 연구)

  • Jeon, Hyo-jin;Cho, Soo-sun
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.105-111
    • /
    • 2019
  • Core technologies that lead the Fourth Industrial Revolution era, such as artificial intelligence, big data, and autonomous driving, are implemented and serviced through the rapid development of computing power and hyper-connected networks based on the Internet of Things. In this paper, we implement two different models for drivable area segmentation in various environment, and propose a better model by comparing the results. The models for drivable area segmentation are using DeepLab V3+ and Mask R-CNN, which have great performances in the field of image segmentation and are used in many studies in autonomous driving technology. For driving information in various environment, we use BDD dataset which provides driving videos and images in various weather conditions and day&night time. The result of two different models shows that Mask R-CNN has higher performance with 68.33% IoU than DeepLab V3+ with 48.97% IoU. In addition, the result of visual inspection of drivable area segmentation on driving image, the accuracy of Mask R-CNN is 83% and DeepLab V3+ is 69%. It indicates Mask R-CNN is more efficient than DeepLab V3+ in drivable area segmentation.

Korean Dependency Parsing Using Deep Bi-affine Network and Stack Pointer Network (Deep Bi-affine Network와 스택 포인터 네트워크를 이용한 한국어 의존 구문 분석 시스템)

  • Ahn, Hwijeen;Park, Chanmin;Seo, Minyoung;Lee, Jaeha;Son, Jeongyeon;Kim, Juae;Seo, Jeongyeon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.689-691
    • /
    • 2018
  • 의존 구문 분석은 자연어 이해 영역의 대표적인 과제 중 하나이다. 본 논문에서는 한국어 의존 구분 분석의 성능 향상을 위해 Deep Bi-affine Network 와 스택 포인터 네트워크의 앙상블 모델을 제안한다. Bi-affine 모델은 그래프 기반 방식, 스택 포인터 네트워크의 경우 그래프 기반과 전이 기반의 장점을 모두 사용하는 모델로 서로 다른 모델의 앙상블을 통해 성능 향상을 기대할 수 있다. 두 모델 모두 한국어 어절의 특성을 고려한 자질을 사용하였으며 세종 의존 구문 분석 데이터에 대해 UAS 90.60 / LAS 88.26(Deep Bi-affine Network), UAS 92.17 / LAS 90.08(스택 포인터 네트워크) 성능을 얻었다. 두 모델에 대한 앙상블 기법 적용시 추가적인 성능 향상을 얻을 수 있었다.

  • PDF

Urban Change Detection for High-resolution Satellite Images using DeepLabV3+ (DeepLabV3+를 이용한 고해상도 위성영상에서의 도시 변화탐지)

  • Song, Chang-Woo;Wahyu, Wiratama
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.441-442
    • /
    • 2021
  • 본 논문에서는 고해상도의 시계열 위성영상을 딥러닝 알고리즘으로 학습하여 도시 변화탐지를 수행한다. 고해상도 위성영상을 활용한 서비스는 4 차 산업혁명 융합 신사업 중 하나인 스마트시티에 적용하여 도시 노후화, 교통 혼잡, 범죄 등 다양한 도시 문제 해결 및 효율적인 도시를 구축하는데 활용이 가능하다. 이에 본 연구에서는 도시 변화탐지를 위한 딥러닝 알고리즘으로 DeepLabV3+를 사용한다. 이는 인코더-디코더 구조로, 공간 정보를 점진적으로 회복함으로써 더욱 정확한 물체의 경계면을 찾을 수 있다. 제안하는 방법은 DeepLabV3+의 레이어와 loss function 을 수정하여 기존보다 좋은 결과를 얻었다. 객관적인 성능평가를 위해, 공개된 데이터셋 LEVIR-CD 으로 학습한 결과로 평균 IoU 는 0.87, 평균 Dice 는 0.93 을 얻었다.

System Design of a Deep-sea Unmanned Underwater Vehicle for Scientific Research (심해 과학조사용 무인잠수정의 시스템 설계)

  • Lee, Pan-Mook;Lee, Choong-Moo;JEON, Bong-Hwan;Hong, Seok-Won;Lim, Yong-Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.243-250
    • /
    • 2002
  • According to Ocean Korea 21, a basic plan established by the Ministry of Maritime Affairs and Fisheries (MOMAF) of Korea in May 2000, Korea Research Institute of Ships and Ocean Engineering (KRISO) proposed a program for the development of a deep-sea unmanned underwater vehicle (UUV) to explore deep sea for scientific purpose. KRISO has launched a project in May 2001 under the support of MOMAF. The deep-sea unmanned underwater vehicle will be applied to scientific researches in deep-sea as well as in shallow water. For operation of underwater vehicles in shallow water near the Korean Peninsula, a special design is required because of strong tidal current. In addition, MOMAF requires the vehicle to be designed for the purpose of long range survey, a long-term observation, and precise works in a specific area. Thus, KRISO has planned to design the system with the functional combination of both ROV and AUV. This paper presents the design of the deep-sea unmanned underwater vehicle.

  • PDF

Shear resistance of steel-concrete-steel deep beams with bidirectional webs

  • Guo, Yu-Tao;Nie, Xin;Fan, Jian-Sheng;Tao, Mu-Xuan
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.299-313
    • /
    • 2022
  • Steel-concrete-steel composite structures with bidirectional webs (SCSBWs) are used in large-scale projects and exhibit good mechanical performances and constructional efficiency. The shear behaviors of SCSBW deep beam members in key joints or in locations subjected to concentrated forces are of concern in design. To address this issue, experimental program is investigated to examine the deep-beam shear behaviors of SCSBWs, in which the cracking process and force transfer mechanism are revealed. Compared with the previously proposed truss model, it is found that a strut-and-tie model is more suitable for describing the shear mechanism of SCSBW deep beams with a short span and sparse transverse webs. According to the experimental analyses, a new model is proposed to predict the shear capacities of SCSBW deep beams. This model uses strut-and-tie concept and introduces web shear and dowel action to consider the coupled multi mechanisms. A stress decomposition method is used to distinguish the contributions of different shear-transferring paths. Based on case studies, a simplified model is further developed, and the explicit solution is derived for design efficiency. The proposed models are verified using experimental data, which are proven to have good accuracy and efficiency and to be suitable for practical application.

A Three-Dimensional Deep Convolutional Neural Network for Automatic Segmentation and Diameter Measurement of Type B Aortic Dissection

  • Yitong Yu;Yang Gao;Jianyong Wei;Fangzhou Liao;Qianjiang Xiao;Jie Zhang;Weihua Yin;Bin Lu
    • Korean Journal of Radiology
    • /
    • v.22 no.2
    • /
    • pp.168-178
    • /
    • 2021
  • Objective: To provide an automatic method for segmentation and diameter measurement of type B aortic dissection (TBAD). Materials and Methods: Aortic computed tomography angiographic images from 139 patients with TBAD were consecutively collected. We implemented a deep learning method based on a three-dimensional (3D) deep convolutional neural (CNN) network, which realizes automatic segmentation and measurement of the entire aorta (EA), true lumen (TL), and false lumen (FL). The accuracy, stability, and measurement time were compared between deep learning and manual methods. The intra- and inter-observer reproducibility of the manual method was also evaluated. Results: The mean dice coefficient scores were 0.958, 0.961, and 0.932 for EA, TL, and FL, respectively. There was a linear relationship between the reference standard and measurement by the manual and deep learning method (r = 0.964 and 0.991, respectively). The average measurement error of the deep learning method was less than that of the manual method (EA, 1.64% vs. 4.13%; TL, 2.46% vs. 11.67%; FL, 2.50% vs. 8.02%). Bland-Altman plots revealed that the deviations of the diameters between the deep learning method and the reference standard were -0.042 mm (-3.412 to 3.330 mm), -0.376 mm (-3.328 to 2.577 mm), and 0.026 mm (-3.040 to 3.092 mm) for EA, TL, and FL, respectively. For the manual method, the corresponding deviations were -0.166 mm (-1.419 to 1.086 mm), -0.050 mm (-0.970 to 1.070 mm), and -0.085 mm (-1.010 to 0.084 mm). Intra- and inter-observer differences were found in measurements with the manual method, but not with the deep learning method. The measurement time with the deep learning method was markedly shorter than with the manual method (21.7 ± 1.1 vs. 82.5 ± 16.1 minutes, p < 0.001). Conclusion: The performance of efficient segmentation and diameter measurement of TBADs based on the 3D deep CNN was both accurate and stable. This method is promising for evaluating aortic morphology automatically and alleviating the workload of radiologists in the near future.

Development of Real-Time Objects Segmentation for Dual-Camera Synthesis in iOS (iOS 기반 실시간 객체 분리 및 듀얼 카메라 합성 개발)

  • Jang, Yoo-jin;Kim, Ji-yeong;Lee, Ju-hyun;Hwang, Jun
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.37-43
    • /
    • 2021
  • In this paper, we study how objects from front and back cameras can be recognized in real time in a mobile environment to segment regions of object pixels and synthesize them through image processing. To this work, we applied DeepLabV3 machine learning model to dual cameras provided by Apple's iOS. We also propose methods using Core Image and Core Graphics libraries from Apple for image synthesis and postprocessing. Furthermore, we improved CPU usage than previous works and compared the throughput rates and results of Depth and DeepLabV3. Finally, We also developed a camera application using these two methods.

Deep Learning-Based, Real-Time, False-Pick Filter for an Onsite Earthquake Early Warning (EEW) System (온사이트 지진조기경보를 위한 딥러닝 기반 실시간 오탐지 제거)

  • Seo, JeongBeom;Lee, JinKoo;Lee, Woodong;Lee, SeokTae;Lee, HoJun;Jeon, Inchan;Park, NamRyoul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.71-81
    • /
    • 2021
  • This paper presents a real-time, false-pick filter based on deep learning to reduce false alarms of an onsite Earthquake Early Warning (EEW) system. Most onsite EEW systems use P-wave to predict S-wave. Therefore, it is essential to properly distinguish P-waves from noises or other seismic phases to avoid false alarms. To reduce false-picks causing false alarms, this study made the EEWNet Part 1 'False-Pick Filter' model based on Convolutional Neural Network (CNN). Specifically, it modified the Pick_FP (Lomax et al.) to generate input data such as the amplitude, velocity, and displacement of three components from 2 seconds ahead and 2 seconds after the P-wave arrival following one-second time steps. This model extracts log-mel power spectrum features from this input data, then classifies P-waves and others using these features. The dataset consisted of 3,189,583 samples: 81,394 samples from event data (727 events in the Korean Peninsula, 103 teleseismic events, and 1,734 events in Taiwan) and 3,108,189 samples from continuous data (recorded by seismic stations in South Korea for 27 months from 2018 to 2020). This model was trained with 1,826,357 samples through balancing, then tested on continuous data samples of the year 2019, filtering more than 99% of strong false-picks that could trigger false alarms. This model was developed as a module for USGS Earthworm and is written in C language to operate with minimal computing resources.

Design of Pet Behavior Classification Method Based On DeepLabCut and Mask R-CNN (DeepLabCut과 Mask R-CNN 기반 반려동물 행동 분류 설계)

  • Kwon, Juyeong;Shin, Minchan;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.927-929
    • /
    • 2021
  • 최근 펫팸족(Pet-Family)과 같이 반려동물을 가족처럼 생각하는 가구가 증가하면서 반려동물 시장이 크게 성장하고 있다. 이러한 이유로 본 논문에서는 반려동물의 객체 식별을 통한 객체 분할과 신체 좌표추정에 기반을 둔 반려동물의 행동 분류 방법을 제안한다. 이 방법은 CCTV를 통해 반려동물 영상 데이터를 수집한다. 수집된 영상 데이터는 반려동물의 인스턴스 분할을 위해 Mask R-CNN(Region Convolutional Neural Networks) 모델을 적용하고, DeepLabCut 모델을 통해 추정된 신체 좌푯값을 도출한다. 이 결과로 도출된 영상 데이터와 추정된 신체 좌표 값은 CNN(Convolutional Neural Networks)-LSTM(Long Short-Term Memory) 모델을 적용하여 행동을 분류한다. 본 모델을 바탕으로 행동을 분석 및 분류하여, 반려동물의 위험 상황과 돌발 행동에 대한 올바른 대처를 제공할 수 있는 기반을 제공할 것이라 기대한다.