• Title/Summary/Keyword: Deep-level defect

Search Result 67, Processing Time 0.022 seconds

ZnO 박막을 이용한 광재료 개발 현황

  • 서효원;정연식;최원국
    • Electrical & Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.13-20
    • /
    • 2004
  • 1996년 GaN와 near band edge emission(NBE) 및 yellow deep-defect level emission의 발광 기구가 ZnO의 greene mission과 매우 유사하다는 점이 발견된 이 후[1,2], II-VIZnO반도체에 대한 광학적 성질에 많은 관심이 집중되기 시작하였다. 1960년대 C. Klingshirin[3]에 의해 bulk ZnO의 exciton luminescence가 관측된 이래로, 1980년대 후반부터 적층 박막 성장 법들이 급속도로 발전을 하여 오고 1988 S. Bethke등이 CVD로 성장한 ZnO의 NBE emission에 관심을 갖기 시작하였고[4], 1996년 2K에서 GaN, ZnO사이의 유사한 발광기구가 알려졌고[5], 도호쿠 및 일본 공업대에서 ZnO의 적층 성장 및 상온에서 defect에 기인한 emission이 없는 깨끗한 PL 의 관측, 상온 lasing, 육방정계 결정 구조에서 비롯된 6-fold symmetry PL 등이 보고되기 시작하였다. [6-8] 2000년에 들어서면서 MgO와 CdO와의 solid solution에 의한 밴드갭을 2.6-4.2 eV 까지 조절하는 가능성이 보고되었고 이를 이용한 ZnO/MgZnO MQW 구조에 대한 연구도 병행되었다.(중략)

  • PDF

Thermally Assisted Carrier Transfer and Field-induced Tunneling in a Mg-doped GaN Thin Film (Mg가 첨가된 GaN 박막에서 캐리어 전이의 열적도움과 전계유도된 터러링 현상)

  • Chung, Sang-Geun;Kim, Yoon-Kyeom;Shin, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.431-435
    • /
    • 2002
  • The dark current and photocurrent(PC) spectrum of Mg-doped GaN thin film were investigated with various bias voltages and temperatures. At high temperature and small bias, the dark current is dominated by holes thermally activated from an acceptor level Al located at about 0.16 eV above the valence band maximum $(E_v)$, The PC peak originates from the electron transition from deep level A2 located at about 0.34 eV above the $E_v$ to the conduction band minimum $(E_ C)$. However, at a large bias voltage, holes thermally activated from A2 to Al experience the field-in-duces tunneling to form one-dimensional defect band at Al, which determines the dark current. The PC peak associated with the transition from Al to $E_ C$ is also observed at large bias voltages owing to the extended recombination lifetime of holes by the tunneling. In the near infrared region, a strong PC peak at 1.20 eV appears due to the hole transition from deep donor/acceptor level to the valence band.

Simplified nonsurgical treatment of peri-implantitis using chlorhexidine and minocycline hydrochloride

  • Heo, SunJin;Kim, Hyun-Joo;Joo, Ji-Young;Lee, Juyoun;Kim, Sung-Jo;Choi, Jeomil
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.5
    • /
    • pp.326-333
    • /
    • 2018
  • Purpose: The present study investigated the outcomes of a newly-developed, simple, and practical nonsurgical treatment modality suitable for most forms of intrabony defects around failing dental implants using intrasulcular delivery of chlorhexidine solution and minocycline hydrochloride (HCl). Methods: Forty-five dental implants in 20 patients diagnosed with peri-implantitis were included. At baseline and the study endpoint, the probing pocket depth (PPD), clinical attachment level (CAL), and the presence of bleeding on probing (BOP) at 6 sites around each implant were recorded. The radiographic osseous defect morphology at the mesial or distal proximal aspect of each implant was classified as 1) narrow or wide and 2) shallow or deep. For a comparative analysis of bone changes according to the defect morphology, the distance from the implant shoulder to the most coronal bone-to-implant contact point (DIB) at the mesial and distal aspects of each implant was measured at baseline and the endpoint. Patients were scheduled to visit the clinic every 2-4 weeks for intrasulcular irrigation of chlorhexidine and delivery of minocycline HCl. Results: We observed statistically significant decreases in PPD, CAL, and BOP after treatment. At the endpoint, bone levels increased in all defects, regardless of the osseous morphology of the intrabony defect. The mean DIB change in deep defects was significantly greater than that in shallow defects. Although the mean bone gain in narrow defects was greater than in wide defects, the difference was not statistically significant. Conclusions: We propose that significant and sustainable improvements in both clinical and radiographic parameters can be expected when intrabony defects around dental implants are managed through a simple nonsurgical approach involving combined intrasulcular chlorhexidine irrigation and local delivery of minocycline HCl.

Effect of Se Flux and Se Treatment on the Photovoltaic Performance of β-CIGS Solar Cells

  • Kim, Ji Hye;Cha, Eun Seok;Park, Byong Guk;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.39-44
    • /
    • 2015
  • $Cu(In,Ga)_3Se_5$ (${\beta}-CIGS$) has a band gap of 1.35 eV which is an optimum value for high solar-energy conversion efficiency. However, ${\beta}-CIGS$ film was not well characterized yet due to lower efficiency compared to $Cu(In,Ga)Se_2$ (${\alpha}-CIGS$). In this work, ${\beta}-CIGS$ films were fabricated by a three-stage co-evaporation of elemental sources with various Se fluxes. As the Se flux increased, the crystallinity of ${\beta}-CIGS$ phase was improved from the analysis of Raman spectroscopy and a deep-level defect was reduced from the analysis of photoluminescence spectroscopy. A Se treatment of the ${\beta}-CIGS$ film at $200^{\circ}C$ increased Ga content and decreased Cu content at the surface of the film. With the Se treatment at $200^{\circ}C$, the cell efficiency was greatly improved for the CIGS films prepared with low Se flux due to the increase of short-circuit current and fill factor. It was found that the main reason of performance improvement was lower Cu content at the surface instead of higher Ga content.

Preparation of Intrinsic ZnO Films at Low Temperature Using Oxidation of ZnS Precursor and Characterizion of the Films

  • Park, Do Hyung;Cho, Yang Hwi;Shin, Dong Hyeop;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.115-121
    • /
    • 2013
  • ZnO film has been used for CIGS solar cells as a buffer layer as itself or by doping Mg and Sn; ZnO film also has been used as a transparent conducting layer by doping Al or B for solar cells. Since ZnO itself is a host material for many applications it is necessary to understand the electrical and optical properties of ZnO film itself with various preparation conditions. We prepared ZnO films by converting ZnS precursor into ZnO film by thermal annealing. ZnO film was formed at low temperature as low as $500^{\circ}C$ by annealing a ZnS precursor layer in air. In the air annealing, the electrical resistivity decreased monotonically with increasing annealing temperature; the intensity of the green photoluminescence at 505 nm increased up to $750^{\circ}C$ annealing. The electrical resistivity further decreased and the intensity of green emission also increased in reducing atmospheres. The results suggest that deep-level defects originated by oxygen vacancy enhanced green emission, which reduce light transmittance and enhance the recombination of electrons in conduction band and holes in valence. More oxidizing environment is necessary to obtain defect-free ZnO film for higher transparency.

Correlation Between Energy Gap and Defect Formation of Al Doped Zinc Oxide on Carbon Doped Silicon Oxide

  • Oh, Teresa;Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.207-212
    • /
    • 2014
  • Aluminum-doped zinc oxide (AZO) films were deposited on SiOC/Si wafer by an RF-magnetron sputtering system, by varying the deposition parameters of radio frequency power from 50 to 200 W. To assess the correlation of the optical properties between the substrate and AZO thin film, photoluminescence was measured, and the origin of deep level emission of AZO thin films grown on SiOC/Si wafer was studied. AZO formed on SiOC/Si substrates exhibited ultraviolet emission due to exciton recombination, and the visible emission was associated with intrinsic and extrinsic defects. For the AZO thin film deposited on SiOC at low RF-power, the deep level emission near the UV region is attributed to an increase of the variations of defects related to the AZO and SiOC layers. The applied RF-power influenced an energy gap of localized trap state produced from the defects, and the gap increased at low RF power due to the formation of new defects across the AZO layer caused by lattice mismatch of the AZO and SiOC films. The optical properties of AZO films on amorphous SiOC compared with those of AZO film on Si were considerably improved by reducing the roughness of the surface with low surface ionization energy, and by solving the problem of structural mismatch with the AZO film and Si wafer.

Tunable doping sites and the impacts in photocatalysis of W-N codoped anatase TiO2

  • Choe, Hui-Chae;Sin, Dong-Bin;Yeo, Byeong-Cheol;Song, Tae-Seop;Han, Sang-Su;Park, No-Jeong;Kim, Seung-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.246-246
    • /
    • 2016
  • Tungsten-nitrogen (W-N) co-doping has been known to enhance the photocatalytic activity of anatase titania nanoparticles by utilizing visible light. The doping effects are, however, largely dependent on calcination or annealing conditions, and thus, the massive production of quality-controlled photocatalysts still remains a challenge. Using density functional theory (DFT) thermodynamics and time-dependent DFT (TDDFT) computations, we investigate the atomic structures of N doping and W-N co-doping in anatase titania, as well as the effect of the thermal processing conditions. We find that W and N dopants predominantly constitute two complex structures: an N interstitial site near a Ti vacancy in the triple charge state and the simultaneous substitutions of Ti by W and the nearest O by N. The latter case induces highly localized shallow in-gap levels near the conduction band minimum (CBM) and the valence band maximum (VBM), whereas the defect complex yielded deep levels (1.9 eV above the VBM). Electronic structures suggest that substitutions of Ti by W and the nearest O by N improves the photocatalytic activity of anatase by band gap narrowing, while defective structure degrades the activity by an in-gap state-assisted electron-hole recombination, which explains the experimentally observed deep level-related photon absorption. Through the real-time propagation of TDDFT (rtp-TDDFT), we demonstrate that the presence of defective structure attracts excited electrons from the conduction band to a localized in-gap state within a much shorter time than the flat band lifetime of titania. Based on these results, we suggest that calcination under N-rich and O-poor conditions is desirable to eliminate the deep-level states to improve photocatalysis.

  • PDF

Aerosol-gel synthesis of ZnO quantum dots dispersed in SiO2 matrix and their characteristics (에어로솔-젤 법을 이용한 SiO2에 분산된 ZnO 양자점의 합성과 그 특성)

  • Kim, Sang-Gyu;Firmansyah, Dudi Adi;Lee, Kwang-Sung;Lee, Donggeun
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.51-59
    • /
    • 2010
  • ZnO quantum dots embedded in a silica matrix without agglomeration were synthesized from $TEOS:Zn(NO_3)_2$ solutions in one-step process by aerosol-gel method. It was successfully demonstrated that the size of ZnO Q-dots could be controlled from 2 to 7 mm verified by a high resolution transmission electron microscope observation. The line scanning energy dispersive X-ray spectroscopy(EDS) revealed that the Q-dots existed preferentially inside SiO2 sphere when Zn/Si < 0.5. However, the Q-dots distributed homogeneously all over the sphere when Zn/Si > 1.0. Blue-shifted UV/Vis absorption peak observation confirmed the quantum size effect on the optical properties. The photoluminescence(PL) emission peaks of the powders at room temperature were consistent with previous reports in the following aspects: 1) PL characteristics are dominated by two peaks of deep-level defect-related emissions at 2.4 - 2.8 eV, 2) the first defect-related peak at 2.4 eV was blue shifted due to the quantum size effect with decreasing the concentration of $Zn(NO_3)_2$(decreasing the size of ZnO q dots). More interestingly, the existence of surface-exposed ZnO q dots affects greatly the second defect PL peak at 2.8 eV.

Surgical Outcome of Reconstruction of Neglected Chronic Achilles Tendon Ruptures (진구성 만성 아킬레스 건 파열의 수술적 치료의 결과)

  • Sung, Ki-Sun;Heo, Jae-Won
    • Journal of Korean Foot and Ankle Society
    • /
    • v.14 no.2
    • /
    • pp.109-114
    • /
    • 2010
  • Purpose: The purpose of this study was to report the surgical outcome of reconstruction of neglected chronic Achilles tendon ruptures with various methods including Achilles tendon allograft. Materials and Methods: Between October 2003 and November 2008, 8 consecutive neglected chronic Achilles tendon ruptures with the defect gap of more than 4 cm underwent surgical reconstruction including V-Y advancement, gastrocnemius fascial turn-down flap, flexor hallucis longus transfer and Achilles tendon allograft. There were 7 males and 1 female who were evaluated at more than 18 months after surgery. At the time of followup, all patients were assessed with regard to postoperative complications, their self-reported level of satisfaction, the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot scale, 10 repetitive single heel rise, single leg hopping test, and ankle range of motion. Results: The AOFAS score increased from average 71.4 (50-87) to 96.4 (86-100). All patients were able to perform 10-repetitive single heel raise and single leg hopping at the latest follow up. No patient experienced wound complications and deep infection. Six patients were rated as 'excellent' and the other two as 'good'. Conclusion: Neglected chronic Achilles tendon ruptures could be successfully treated with careful selection of the reconstruction method according to the amount of defect gap. With an extensive defect, Achilles tendon allograft can be a good option when the reconstruction is not feasible otherwise.

Oxide Planarization of Trench Structure using Chemical Mechanical Polishing(CMP) (기계화학적 연마를 이용한 트렌치 구조의 산화막 평탄화)

  • 김철복;김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.838-843
    • /
    • 2002
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for deep sub-micron technology. The reverse moat etch process has been used for the shallow trench isolation(STI)-chemical mechanical polishing(CMP) process with conventional low selectivity slurries. Thus, the process became more complex, and the defects were seriously increased. In this paper, we studied the direct STI-CMP process without reverse moat etch step using high selectivity slurry(HSS). As our experimental results show, it was possible to achieve a global planarization without the complicated reverse moat process, the STI-CMP process could be dramatically simplified, and the defect level was reduced. Therefore the throughput, yield, and stability in the ULSI semiconductor device fabrication could be greatly improved.