• Title/Summary/Keyword: Deep-Neural-Network

Search Result 2,114, Processing Time 0.026 seconds

Efficient Driver Attention Monitoring Using Pre-Trained Deep Convolution Neural Network Models

  • Kim, JongBae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.119-128
    • /
    • 2022
  • Recently, due to the development of related technologies for autonomous vehicles, driving work is changing more safely. However, the development of support technologies for level 5 full autonomous driving is still insufficient. That is, even in the case of an autonomous vehicle, the driver needs to drive through forward attention while driving. In this paper, we propose a method to monitor driving tasks by recognizing driver behavior. The proposed method uses pre-trained deep convolutional neural network models to recognize whether the driver's face or body has unnecessary movement. The use of pre-trained Deep Convolitional Neural Network (DCNN) models enables high accuracy in relatively short time, and has the advantage of overcoming limitations in collecting a small number of driver behavior learning data. The proposed method can be applied to an intelligent vehicle safety driving support system, such as driver drowsy driving detection and abnormal driving detection.

Analyzing DNN Model Performance Depending on Backbone Network (백본 네트워크에 따른 사람 속성 검출 모델의 성능 변화 분석)

  • Chun-Su Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.128-132
    • /
    • 2023
  • Recently, with the development of deep learning technology, research on pedestrian attribute recognition technology using deep neural networks has been actively conducted. Existing pedestrian attribute recognition techniques can be obtained in such a way as global-based, regional-area-based, visual attention-based, sequential prediction-based, and newly designed loss function-based, depending on how pedestrian attributes are detected. It is known that the performance of these pedestrian attribute recognition technologies varies greatly depending on the type of backbone network that constitutes the deep neural networks model. Therefore, in this paper, several backbone networks are applied to the baseline pedestrian attribute recognition model and the performance changes of the model are analyzed. In this paper, the analysis is conducted using Resnet34, Resnet50, Resnet101, Swin-tiny, and Swinv2-tiny, which are representative backbone networks used in the fields of image classification, object detection, etc. Furthermore, this paper analyzes the change in time complexity when inferencing each backbone network using a CPU and a GPU.

  • PDF

Deep Neural Network-based Jellyfish Distribution Recognition System Using a UAV (무인기를 이용한 심층 신경망 기반 해파리 분포 인식 시스템)

  • Koo, Jungmo;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.432-440
    • /
    • 2017
  • In this paper, we propose a jellyfish distribution recognition and monitoring system using a UAV (unmanned aerial vehicle). The UAV was designed to satisfy the requirements for flight in ocean environment. The target jellyfish, Aurelia aurita, is recognized through convolutional neural network and its distribution is calculated. The modified deep neural network architecture has been developed to have reliable recognition accuracy and fast operation speed. Recognition speed is about 400 times faster than GoogLeNet by using a lightweight network architecture. We also introduce the method for selecting candidates to be used as inputs to the proposed network. The recognition accuracy of the jellyfish is improved by removing the probability value of the meaningless class among the probability vectors of the evaluated input image and re-evaluating it by normalization. The jellyfish distribution is calculated based on the unit jellyfish image recognized. The distribution level is defined by using the novelty concept of the distribution map buffer.

Applying feature normalization based on pole filtering to short-utterance speech recognition using deep neural network (심층신경망을 이용한 짧은 발화 음성인식에서 극점 필터링 기반의 특징 정규화 적용)

  • Han, Jaemin;Kim, Min Sik;Kim, Hyung Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.64-68
    • /
    • 2020
  • In a conventional speech recognition system using Gaussian Mixture Model-Hidden Markov Model (GMM-HMM), the cepstral feature normalization method based on pole filtering was effective in improving the performance of recognition of short utterances in noisy environments. In this paper, the usefulness of this method for the state-of-the-art speech recognition system using Deep Neural Network (DNN) is examined. Experimental results on AURORA 2 DB show that the cepstral mean and variance normalization based on pole filtering improves the recognition performance of very short utterances compared to that without pole filtering, especially when there is a large mismatch between the training and test conditions.

Measurement Method of Height of White Light Scanning Interferometer using Deep Learning (Deep Learning을 사용한 백색광 주사 간섭계의 높이 측정 방법)

  • Baek, Sang Hyune;Hwang, Wonjun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.864-875
    • /
    • 2018
  • In this paper, we propose a measurement method for height of white light scanning interferometer using deep learning. In order to measure the fine surface shape, a three-dimensional surface shape measurement technique is required. A typical example is a white light scanning interferometer. In order to calculate the surface shape from the measurement image of the white light scanning interferometer, the height of each pixel must be calculated. In this paper, we propose a neural network for height calculation and use virtual data generation method to train this neural network. The accuracy was measured by inputting 57 actual data to the neural network which had completed the learning. We propose two new functions for accuracy measurement. We have analyzed the cases where there are many errors among the accuracy calculation values, and it is confirmed that there are many errors when there is no interference fringe or outside the learned range. We confirmed that the proposed neural network works correctly in most cases. We expect better results if we improve the way we generate learning data.

River streamflow prediction using a deep neural network: a case study on the Red River, Vietnam

  • Le, Xuan-Hien;Ho, Hung Viet;Lee, Giha
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.843-856
    • /
    • 2019
  • Real-time flood prediction has an important role in significantly reducing potential damage caused by floods for urban residential areas located downstream of river basins. This paper presents an effective approach for flood forecasting based on the construction of a deep neural network (DNN) model. In addition, this research depends closely on the open-source software library, TensorFlow, which was developed by Google for machine and deep learning applications and research. The proposed model was applied to forecast the flowrate one, two, and three days in advance at the Son Tay hydrological station on the Red River, Vietnam. The input data of the model was a series of discharge data observed at five gauge stations on the Red River system, without requiring rainfall data, water levels and topographic characteristics. The research results indicate that the DNN model achieved a high performance for flood forecasting even though only a modest amount of data is required. When forecasting one and two days in advance, the Nash-Sutcliffe Efficiency (NSE) reached 0.993 and 0.938, respectively. The findings of this study suggest that the DNN model can be used to construct a real-time flood warning system on the Red River and for other river basins in Vietnam.

Image-based Artificial Intelligence Deep Learning to Protect the Big Data from Malware (악성코드로부터 빅데이터를 보호하기 위한 이미지 기반의 인공지능 딥러닝 기법)

  • Kim, Hae Jung;Yoon, Eun Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.76-82
    • /
    • 2017
  • Malware, including ransomware to quickly detect, in this study, to provide an analysis method of malicious code through the image analysis that has been learned in the deep learning of artificial intelligence. First, to analyze the 2,400 malware data, and learning in artificial neural network Convolutional neural network and to image data. Extracts subgraphs to convert the graph of abstracted image, summarizes the set represent malware. The experimentally analyzed the malware is not how similar. Using deep learning of artificial intelligence by classifying malware and It shows the possibility of accurate malware detection.

Generating Test Data for Deep Neural Network Model using Synonym Replacement (동의어 치환을 이용한 심층 신경망 모델의 테스트 데이터 생성)

  • Lee, Min-soo;Lee, Chan-gun
    • Journal of Software Engineering Society
    • /
    • v.28 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • Recently, in order to effectively test deep neural network model for image processing application, researches have actively conducted to automatically generate data in corner-case that is not correctly predicted by the model. This paper proposes test data generation method that selects arbitrary words from input of system and transforms them into synonyms in order to test the bug reporter automatic assignment system based on sentence classification deep neural network model. In addition, we compare and evaluate the case of using proposed test data generation and the case of using existing difference-inducing test data generations based on various neuron coverages.

Impact parameter prediction of a simulated metallic loose part using convolutional neural network

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1199-1209
    • /
    • 2021
  • The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.

A study on estimating the main dimensions of a small fishing boat using deep learning (딥러닝을 이용한 연안 소형 어선 주요 치수 추정 연구)

  • JANG, Min Sung;KIM, Dong-Joon;ZHAO, Yang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.272-280
    • /
    • 2022
  • The first step is to determine the principal dimensions of the design ship, such as length between perpendiculars, beam, draft and depth when accomplishing the design of a new vessel. To make this process easier, a database with a large amount of existing ship data and a regression analysis technique are needed. Recently, deep learning, a branch of artificial intelligence (AI) has been used in regression analysis. In this paper, deep learning neural networks are used for regression analysis to find the regression function between the input and output data. To find the neural network structure with the highest accuracy, the errors of neural network structures with varying the number of the layers and the nodes are compared. In this paper, Python TensorFlow Keras API and MATLAB Deep Learning Toolbox are used to build deep learning neural networks. Constructed DNN (deep neural networks) makes helpful in determining the principal dimension of the ship and saves much time in the ship design process.