• 제목/요약/키워드: Deep-LTS

검색결과 3건 처리시간 0.017초

딥러닝을 이용한 경량혼합토의 일축압축강도 예측 시스템 (Predictive System for Unconfined Compressive Strength of Lightweight Treated Soil(LTS) using Deep Learning)

  • 박보현;김두기;박대욱
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권3호
    • /
    • pp.18-25
    • /
    • 2020
  • 경량혼합토의 일축압축강도는 배합비에 크게 의존한다. 경량혼합토와 다양한 경량혼합토의 구성성분들의 관계를 특징짓기 위한 기존연구에서는 시험을 통한 회귀모델을 사용하여 정규화계수를 제안하였다. 그러나 실내시험에서 얻은 결과는 재료와 배합비사이의 관계가 복잡하기 때문에 일정한 예측의 정확도를 기대할 수 없다. 이 연구에서는 다양한 배합조건에서 수행된 실내시험결과를 바탕으로 심층신경망 모델을 적용함으로써 경량혼합토의 일축압축강도를 예측하였다. 제안된 심층신경망 모델을 사용함으로써 설계 배합조건으로 구성된 경량혼합토의 일축압축강도 값을 합리적으로 산정할 수 있다.

천리안위성2A호 기상탑재체 Best Detector Select 맵 평가 및 업데이트 (GEO-KOMPSAT-2A AMI Best Detector Select Map Evaluation and Update)

  • 진경욱;이상철;이정현
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.359-365
    • /
    • 2021
  • 천리안위성2A호 기상탑재체 AMI(Advanced Meteorological Imager) 센서 검출기의 최상의 요소들로 구성된 Best Detector Select (BDS) 맵은 발사 전 확정되어 AMI에 업로드 되어 있다. 위성 발사 이후 급격한 온도 변화 환경에 노출되면 검출기의 성능에 변화가 생길 수 있으며, 발사 및 탑재체 아웃개싱 이후에 BDS맵의 성능을 다시 분석하고 필요시 업데이트가 필요하다. 검출기 요소 전체에 대한 성능을 검증하기 위한 분석 작업이 탑재체 개발업체(미 L3HARRIS사)가 제공한 BDS맵 분석 기술 문서를 기반으로 진행되었다. BDS맵 분석이란 탑재체 검출기가 기준 목표물(심우주와 탑재체 내부 보정 타겟)을 응시하는 동안 얼마나 안정적인 신호를 보이는 지를 평가하는 것이다. 이러한 목적으로 LTS(Long Time Series) 및 V-V(Output Voltage vs. Bias Voltage)라 부르는 검증법이 이용된다. LTS는 30초 동안, V-V는 2초 동안 목표물을 응시하고 이 때의 검출기 노이즈 성분을 계산한다. 자료를 획득하기 위해서는 탑재체의 운영을 멈추고 특별 관측을 실시하여야 하기 때문에, 정상 운영 전인 궤도상 시험기간 중에 해당 작업이 이루어지게 된다. 천리안위성2A호 기상탑재체 궤도상 시험 기간 동안 획득한 자료를 바탕으로 BDS맵의 상태를 평가하였다. 발사 전 지상 시험에서 평가된 BDS맵의 전체 성분들 중에 약 1%에 해당하는 요소들이 성능 변화를 보였으며, 이를 다른 요소들 중 최상의 성능을 보이는 성분으로 교체하였다. 새로운 BDS맵을 적용한 결과 BDS문제로 인해 야기된 기상탑재체 원시영상에 나타나는 노이즈 성분(줄무늬)이 완전하게 제거되었다.

스마트팜 빅데이터 분석을 위한 이기종간 심층학습 기법 연구 (A Study on Deep Learning Methodology for Bigdata Mining from Smart Farm using Heterogeneous Computing)

  • 민재기;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.162-162
    • /
    • 2017
  • 구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다

  • PDF