• Title/Summary/Keyword: Deep white matter hyperintensity

Search Result 4, Processing Time 0.02 seconds

The Effect of Leukoaraiosis on the Severity and Course of Delirium (백질변성이 섬망의 심각도 및 경과에 미치는 영향)

  • Choi, Won-Jung;Seok, Jeong-Ho;Oh, Seung-Taek;Chung, Tae-Sub;Kim, Jae-Jin
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.26 no.2
    • /
    • pp.194-200
    • /
    • 2018
  • Objectives : The significance of leukoaraiosis on brain magnetic resonance imaging (MRI) is uncertain, but it is often seen with vascular risk factors or in the context of cognitive impairment. We aimed to investigate the effect of leukoaraiosis on the severity and course of delirium. Methods : Periventricular hyperintensity and deep white matter hyperintensity on brain MRI were rated in 42 patients with delirium by semiquantative visual rating scale. Correlations between their grades and the scores of Korean version of Delirium Rating Scale-Revised-98 (K-DRS-R-98) were analyzed, and the interaction effects between the groups according to the levels of leukoaraiosis and two evaluation points were also analyzed. Results : The grade of deep white matter hyperintensity in the occipital lobe was positively correlated with the scores on the total, severity items, cognitive items, and non-cognitive items of K-DRS-R-98. The cognitive items scores of K-DRS-R-98 in the low grade group of periventricular hyperintensity showed significantly steeper decrease than the high grade group. Conclusions : A difference in severity or recovery speed of delirium according to the level of leukoaraiosis may result from disruption in brain functional connectivity. Our results have a clinical implication in that the severity and course of delirium can be possibly predicted using the level of leukoaraiosis.

Comparing Initial Magnetic Resonance Imaging Findings to Differentiate between Krabbe Disease and Metachromatic Leukodystrophy in Children

  • Koh, Seok Young;Choi, Young Hun;Lee, Seul Bi;Lee, Seunghyun;Cho, Yeon Jin;Cheon, Jung-Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.101-108
    • /
    • 2021
  • Purpose: To identify characteristic magnetic resonance imaging (MRI) features to differentiate between Krabbe disease and metachromatic leukodystrophy (MLD) in young children. Materials and Methods: We collected all confirmed cases of Krabbe disease and MLD between October 2004 and September 2020 at Seoul National University Children's Hospital. Patients with initial MRI available were included. Their initial MRIs were retrospectively reviewed for the following: 1) presence of white matter signal abnormality involving the periventricular and deep white matter, subcortical white matter, internal capsule, brainstem, and cerebellum; 2) presence of volume decrease and signal alteration in the corpus callosum and thalamus; 3) presence of the tigroid sign; 4) presence of optic nerve hypertrophy; and 5) presence of enhancement or diffusion restriction. Results: Eleven children with Krabbe disease and 12 children with MLD were included in this study. There was no significant difference in age or symptoms at onset. Periventricular and deep white matter signal alterations sparing the subcortical white matter were present in almost all patients of the two groups. More patients with Krabbe disease had T2 hyperintensities in the internal capsule and brainstem than patients with MLDs. In contrast, more patients with MLD had T2 hyperintensities in the splenium and genu of the corpus callosum. No patient with Krabbe disease showed T2 hyperintensity in the corpus callosal genu. A decrease in volume in the corpus callosum and thalamus was more frequently observed in patients with Krabbe disease than in those with MLD. Other MRI findings including the tigroid sign and optic nerve hypertrophy were not significantly different between the two groups. Conclusion: Signal abnormalities in the internal capsule and brainstem, decreased thalamic volume, decreased splenial volume accompanied by signal changes, and absence of signal changes in the callosal genu portion were MRI findings suggestive of Krabbe disease rather than MLD based on initial MRI. Other MRI findings such as the tigroid sign could not help differentiate between these two diseases.

White Matter Lesions Predominantly Located in Deep White Matter Represent Embolic Etiology Rather Than Small Vessel Disease

  • Young Hee Jung;Seongbeom Park;Na Kyung Lee;Hyun Jeong Han;Hyemin Jang;Hee Jin Kim;Sang Won Seo;Duk Lyul Na
    • Dementia and Neurocognitive Disorders
    • /
    • v.22 no.1
    • /
    • pp.28-42
    • /
    • 2023
  • Background and Purpose: We investigated the correlation between the deep distribution of white matter hyperintensity (WMH) (dWMH: WMH in deep and corticomedullary areas, with minimal periventricular WMH) and a positive agitated saline contrast echocardiography result. Methods: We retrospectively recruited participants with comprehensive dementia evaluations, an agitated saline study, and brain imaging. The participants were classified into two groups according to WMH-distributions: dWMH and dpWMH (mainly periventricular WMH with or without deep WMH.) We hypothesized that dWMH is more likely associated with embolism, whereas dpWMH is associated with small-vessel diseases. We compared the clinical characteristics, WMH-distributions, and positive rate of agitated saline studies between the two groups. Results: Among 90 participants, 27 and 12 met the dWMH and dpWMH criteria, respectively. The dWMH-group was younger (62.2±7.5 vs. 78.9±7.3, p<0.001) and had a lower prevalence of hypertension (29.6% vs. 75%, p=0.008), diabetes mellitus (3.7% vs. 25%, p=0.043), and hyperlipidemia (33.3% vs. 83.3%, p=0.043) than the dpWMH-group. Regarding deep white matter lesions, the number of small lesions (<3 mm) was higher in the dWMH-group(10.9±9.7) than in the dpWMH-group (3.1±6.4) (p=0.008), and WMH was predominantly distributed in the border-zones and corticomedullary areas. Most importantly, the positive agitated saline study rate was higher in the dWMH-group than in the dpWMH-group (81.5% vs. 33.3%, p=0.003). Conclusions: The dWMH-group with younger participants had fewer cardiovascular risk factors, showed more border-zone-distributions, and had a higher agitated saline test positivity rate than the dpWMH-group, indicating that corticomedullary or deep WMH-distribution with minimal periventricular WMH suggests embolic etiologies.

Diagnostic Performance Using a Combination of MRI Findings for Evaluating Cognitive Decline (인지기능 저하평가를 위한 MR 영상 소견 조합의 진단능)

  • Jin Young Byun;Min Kyoung Lee;So Lyung Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.1
    • /
    • pp.184-196
    • /
    • 2024
  • Purpose We investigated potentially promising imaging findings and their combinations in the evaluation of cognitive decline. Materials and Methods This retrospective study included 138 patients with subjective cognitive impairments, who underwent brain MRI. We classified the same group of patients into Alzheimer's disease (AD) and non-AD groups, based on the neuropsychiatric evaluation. We analyzed imaging findings, including white matter hyperintensity (WMH) and cerebral microbleeds (CMBs), using the Kruskal-Wallis test for group comparison, and receiver operating characteristic (ROC) curve analysis for assessing the diagnostic performance of imaging findings. Results CMBs in the lobar or deep locations demonstrated higher prevalence in the patients with AD compared to those in the non-AD group. The presence of lobar CMBs combined with periventricular WMH (area under the ROC curve [AUC] = 0.702 [95% confidence interval: 0.599-0.806], p < 0.001) showed the highest performance in differentiation of AD from non-AD group. Conclusion Combinations of imaging findings can serve as useful additive diagnostic tools in the assessment of cognitive decline.