• Title/Summary/Keyword: Deep well pump

Search Result 25, Processing Time 0.022 seconds

Design Guidlines of Geothermal Heat Pump System Using Standing Column Well (수주지열정(SCW)을 이용한 천부지열 냉난방시스템 설계지침)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Kim, Hyong-Soo;Jeon, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.607-613
    • /
    • 2006
  • For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design flow rate of GSHP with good water quality and moderate temperature, and non-collapsing of borehole wall during reinjection of circulating water into the SCW. A closed loop type-vertical ground heat exchanger(GHEX) with $100{\sim}150m$ deep can supply geothermal energy of 2 to 3 RT but a SCW with $400{\sim}500m$ deep can provide $30{\sim}40RT$ being equivalent to 10 to 15 numbers of GHEX as well requires smaller space. Being considered as an alternative of vertical GHEX, many numbers of SCW have been widely constructed in whole country without any account for site specific hydrogeologic and geothermal characteristics. When those are designed and constructed under the base of insufficient knowledges of hydrgeothermal properties of the relevant specific site as our current situations, a bad reputation will be created and it will hamper a rational utilization of geothermal energy using SCW in the near future. This paper is prepared for providing a guideline of SCW design comportable to our hydrogeothermal system.

Investigation of Hydraulic Flow Properties around the Mouths of Deep Intake and Discharge Structures at Nuclear Power Plant by Numerical Model (수치모의를 통한 원자력 발전소 심층 취·배수 구조물 유·출입구 주변에서의 수리학적 흐름특성 고찰)

  • Lee, Sang Hwa;Yi, Sung Myeon;Park, Byong Jun;Lee, Han Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.123-130
    • /
    • 2012
  • A cooling system is indispensable for the fossil and nuclear power plants which produce electricity by rotating the turbines with hot steam. A cycle of the typical cooling system includes pumping of seawater at the intake pump house, exchange of heat at the condenser, and discharge of hot water to the sea. The cooling type of the nuclear power plants in Korea recently evolves from the conventional surface intake/discharge systems to the submerged intake/discharge systems that minimize effectively an intake temperature rise of the existing plants and that are beneficial to the marine environment by reducing the high temperature region with an intensive dilution due to a high velocity jet and density differential at the mixing zone. It is highly anticipated that the future nuclear power plants in Korea will accommodate the submerged cooling system in credit of supplying the lower temperature water in the summer season. This study investigates the approach flow patterns at the velocity caps and discharge flow patterns from diffusers using the 3-D computational fluid dynamics code of $FLOW-3D^{(R)}$. The approach flow test has been conducted at the velocity caps with and without a cap. The discharge flow from the diffuser was simulated for the single-port diffuser and multi-ports diffuser. The flow characteristics to the velocity cap with a cap demonstrate that fish entrainment can significantly be minimized on account of the low vertical flow component around the cap. The flow pattern around the diffuser is well agreed with the schematic diagram by Jirka and Harleman.

A Study on Extracting Bottom Water Taking in Concern of Temperature Level Boundaries (수온층을 고려한 저층수 취수 기술에 관한 연구)

  • Sim, Kyung-Jong;Park, Hee-Moon;Lim, Hyun-Mook;Cho, Su;Lee, Su-Yul;Park, Tae-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1285-1290
    • /
    • 2008
  • The interest in use of new field of energy and unused existing potential energy has been raised in number of advanced countries including South Korea. As a respond of the interest and the following reactions, a new technology which helps to reduce bad environmental factors and decrease national energy consumption rate in the way of extract cold-heat energy in dam water. This research focuses on a method that enables taking the water flows in desirable temperature range whilst keeping water temperature boundaries of bottom level water. The analysis was made in simulating on CFD. In order to keep the temperature boundary level, a deep well pump was set in piping in the simulation. As the significant result, the most alteration in temperature was found when the smallest size of pipe was plumbed. However, when the flow has small value of velocity, no matter how big the piping size was, the temperature variation was negligible. Therefore, possible hypothesis was made as bigger piping as fast flow will have better function in the way to keep the temperature boundary level.

  • PDF

Chemical Resistance and Field Trial of 3D-Printed Plastic Ball Bearing Used in Electric Motors for Chemical Processes (화학공정용 전동기에 사용된 3D 프린팅 플라스틱 볼베어링의 내화학성 평가 및 현장적용 연구)

  • Youngjun Kwon;Myounggyu Noh
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Fluid pumps in chemical processes are typically driven by electric motors. Even if the motor is separated from the pump with seals, wear resulting from friction and misalignment can lead to leakage of chemical fluid, causing corrosion in the bearing supporting the motor, and, eventually, failure of the motor. It is thus a standard procedure to replace bearings at regular intervals. In this article, we propose 3D-printed plastic ball bearings for use as an alternative to commercial stainless-steel ball bearings. The plastic bearings are easy to manufacture, require less time to replace, and are chemically resistant. To validate the applicability of the plastic bearings, we first conducted chemical resistance tests. Bearings were immersed in 30 caustic acid and 30 nitric acid for 30 min and 24 h, respectively. The test results showed no corrosive damage to the bearings. A test rig was set up to compare the performance of the plastic bearings with that of the commercially equivalent deep-groove ball bearings. Loading test results showed that the plastic bearings performed as well as the commercial bearing in terms of vibration level and load-handling capability. Finally, a plastic bearing was subjected to a clean-in-place process for three months. It actually outperformed the commercial bearing in terms of chemical resistance. Thus, 3D-printed plastic bearings are a viable alternative to stainless-steel ball bearings.

The Clinical Outcomes of Off-Pump Coronary Artery Bypass Grafting in the Octogenarians (80세 이상 고령 환자에서 심폐바이패스 없이 시행한 관상동맥우회술의 중단기 성적)

  • Kim Do-Kyun;Lee Chang Young;Lee Kyo Joon;Joo Hyun Chul;Yoo Kyung-Jong
    • Journal of Chest Surgery
    • /
    • v.38 no.10 s.255
    • /
    • pp.680-684
    • /
    • 2005
  • Background: With the increasing age of the population, coronary artery bypass grafting in the elderly patients is becoming common. Off-pump coronary artery bypass grafting (OPCAB) has been proven to be less morbidity and to facilitate early recovery. The elderly patients may have benefits by avoiding the adverse effects of the cardiopulmonary bypass. The purpose of this study is to evaluate our results of OPCAB in elderly patients. Material and Method: A retrospective chart review was carried out for 12 patients aged over 80 years who underwent isolated OPCAB from January 2001 and March 2004. Data were collected risk factors for disease, extent of coronary disease, and in-hospital outcomes. Postoperative graft patiency was evaluated in 9 patients by multi-slice computed tomography. Result: Eleven patients had triple vessel disease or left main disease. Four patients were suffered from preoperative CVA, and 4 patients had chronic obstructive pulmonary disease. Two patients had myocardial infarction (MI), among them 1 patient was suffered from pulmonary edema after preoperative MI. There was no perioperative death, perioperative MI, and no ventricular arrhythmia. Also there was no perioperative stroke and renal failure. But there was one deep sternal infection who recovered by treating of muscle flap. Atrial fibrillation was newly developed in 1 patient, but was well controlled by medication. Mean intubation time was $15.9\pm4.4(8\~20hrs)$ hrs and mean ICU stay was $2.9\pm0.8(2\~4 days)$ days. Mean hospital day was $21.6\pm14.3(13\~56 days)$ days. Postoperative mean CK-MS was $11.3\pm14.1\;ng/mL$. Early postoperative graft patency rate was $100\%(24/24)$. Follow-up was completed in all patients. In this time, there was no patients with angina or death. Conclusion: The results of this study suggest that OPCAB reduces morbidity and favors hospital outcomes. Therefore, OPCAB is safe, reasonable and might be preferable operative strategy in elderly patients.