• Title/Summary/Keyword: Deep web

Search Result 261, Processing Time 0.03 seconds

Design of Deep Learning-based Location information technology for Place image collecting

  • Jang, Jin-wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.31-36
    • /
    • 2020
  • This research study designed a location image collecting technology. It provides the exact location information of an image which is not given in the photo to the user. Deep learning technology analysis and collects the images. The purpose of this service system is to provide the exact place name, location and the various information of the place such as nearby recommended attractions when the user upload the image photo to the service system. Suggested system has a deep learning model that has a size of 25.3MB, and the model repeats the learning process 50 times with a total of 15,266 data, performing 93.75% of the final accuracy. This system can also be linked with various services potentially for further development.

Privacy-Preserving in the Context of Data Mining and Deep Learning

  • Altalhi, Amjaad;AL-Saedi, Maram;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.137-142
    • /
    • 2021
  • Machine-learning systems have proven their worth in various industries, including healthcare and banking, by assisting in the extraction of valuable inferences. Information in these crucial sectors is traditionally stored in databases distributed across multiple environments, making accessing and extracting data from them a tough job. To this issue, we must add that these data sources contain sensitive information, implying that the data cannot be shared outside of the head. Using cryptographic techniques, Privacy-Preserving Machine Learning (PPML) helps solve this challenge, enabling information discovery while maintaining data privacy. In this paper, we talk about how to keep your data mining private. Because Data mining has a wide variety of uses, including business intelligence, medical diagnostic systems, image processing, web search, and scientific discoveries, and we discuss privacy-preserving in deep learning because deep learning (DL) exhibits exceptional exactitude in picture detection, Speech recognition, and natural language processing recognition as when compared to other fields of machine learning so that it detects the existence of any error that may occur to the data or access to systems and add data by unauthorized persons.

Anatomical Study of Interdigital Neuroma Occurring Site and the Deep Transverse Metatarsal Ligament (DTML) (지간 신경종 발생 위치와 심부 횡 중족 골간 인대의 해부학적 연구)

  • Kim, J-Young;Choi, Jae-Hyuck;Lee, Kyung-Tai;Young, Ki-Won;Park, Jung-Min
    • Journal of Korean Foot and Ankle Society
    • /
    • v.11 no.2
    • /
    • pp.182-186
    • /
    • 2007
  • Purpose: We examined the relationship of interdigital neuroma occurring site and the surrounding structures, including the deep transverse metatarsal ligament (DTML) by cadaver study and clinical results. Materials and Methods: Seventeen fresh frozen cadavers study were done to evaluate the relationship of interdigital neuroma occuring site and the DTML at two phase of the gait cycle with 60 degree of metatarsophalangeal dorsiflexion and with 15 degrees of ankle dorsiflexion. We measured the distance from interdigital nerve bifurcation of the common digital nerve to anterior margin of the DTML and longitudinal length of DTML itself. Clinically, we checked the location of interdigital neuroma and DTML length during surgery in 32 feet. Results: In the second and third web space, the mean distance from bifurcation of the common digital nerve of foot to the anterior margin of DTML was 16.7 mm, 15.1 mm in the mid-stance position, and 15.9 mm. 14.6 mm in heel-off position. Second, Third web space ligament itself length were average 12.8 mm, 10.6 mm. Clinically, all of the cases of interdigital neuroma started at the bifurcation area of the common digital nerve and interdigital neuroma was average 7.5 mm (range; 6-11 mm). Conclusion: Interdigital neuroma were located more distally than DTML in both the mid-stance and heel off stage. The main lesion was located between metatarsal head and metatarsophalangeal joint and more distal than the DTML anterior margin.

  • PDF

Nonlinear stability of the upper chords in half-through truss bridges

  • Wen, Qingjie;Yue, Zixiang;Liu, Zhijun
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.307-319
    • /
    • 2020
  • The upper chords in half-through truss bridges are prone to buckling due to a lack of the upper transverse connections. Taking into account geometric and material nonlinearity, nonlinear finite-element analysis of a simple supported truss bridge was carried out to exhibit effects of different types of initial imperfections. A half-wave of initial imperfection was proved to be effective in the nonlinear buckling analysis. And a parameter analysis of initial imperfections was also conducted to reveal that the upper chords have the greatest impact on the buckling, followed by the bottom chords, vertical and diagonal web members. Yet initial imperfections of transverse beams have almost no effect on the buckling. Moreover, using influence surface method, the combinatorial effects of initial imperfections were compared to demonstrate that initial imperfections of the upper chords play a leading role. Furthermore, the equivalent effective length coefficients of the upper chord were derived to be 0.2~0.28 by different methods, which implies vertical and diagonal web members still provide effective constraints for the upper chord despite a lack of the upper transverse connections between the two upper chords. Therefore, the geometrical and material nonlinear finite-element method is effective in the buckling analysis due to its higher precision. Based on nonlinear analysis and installation deviations of members, initial imperfection of l/500 is recommended in the nonlinear analysis of half-through truss bridges without initial imperfection investigation.

Understanding the Current State of Deep Learning Application to Water-related Disaster Management in Developing Countries

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.145-145
    • /
    • 2022
  • Availability of abundant water resources data in developing countries is a great concern that has hindered the adoption of deep learning techniques (DL) for disaster prevention and mitigation. On the contrary, over the last two decades, a sizeable amount of DL publication in disaster management emanated from developed countries with efficient data management systems. To understand the current state of DL adoption for solving water-related disaster management in developing countries, an extensive bibliometric review coupled with a theory-based analysis of related research documents is conducted from 2003 - 2022 using Web of Science, Scopus, VOSviewer software and PRISMA model. Results show that four major disasters - pluvial / fluvial flooding, land subsidence, drought and snow avalanche are the most prevalent. Also, recurrent flash floods and landslides caused by irregular rainfall pattern, abundant freshwater and mountainous terrains made India the only developing country with an impressive DL adoption rate of 50% publication count, thereby setting the pace for other developing countries. Further analysis indicates that economically-disadvantaged countries will experience a delay in DL implementation based on their Human Development Index (HDI) because DL implementation is capital-intensive. COVID-19 among other factors is identified as a driver of DL. Although, the Long Short Term Model (LSTM) model is the most frequently used, but optimal model performance is not limited to a certain model. Each DL model performs based on defined modelling objectives. Furthermore, effect of input data size shows no clear relationship with model performance while final model deployment in solving disaster problems in real-life scenarios is lacking. Therefore, data augmentation and transfer learning are recommended to solve data management problems. Intensive research, training, innovation, deployment using cheap web-based servers, APIs and nature-based solutions are encouraged to enhance disaster preparedness.

  • PDF

Performance Assessment of Machine Learning and Deep Learning in Regional Name Identification and Classification in Scientific Documents (머신러닝을 이용한 과학기술 문헌에서의 지역명 식별과 분류방법에 대한 성능 평가)

  • Jung-Woo Lee;Oh-Jin Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.389-396
    • /
    • 2024
  • Generative AI has recently been utilized across all fields, achieving expert-level advancements in deep data analysis. However, identifying regional names in scientific literature remains a challenge due to insufficient training data and limited AI application. This study developed a standardized dataset for effectively classifying regional names using address data from Korean institution-affiliated authors listed in the Web of Science. It tested and evaluated the applicability of machine learning and deep learning models in real-world problems. The BERT model showed superior performance, with a precision of 98.41%, recall of 98.2%, and F1 score of 98.31% for metropolitan areas, and a precision of 91.79%, recall of 88.32%, and F1 score of 89.54% for city classifications. These findings offer a valuable data foundation for future research on regional R&D status, researcher mobility, collaboration status, and so on.

Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel

  • Guo, Yan;Lian, Ming;Zhang, Hao;Cheng, Qianqian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.827-841
    • /
    • 2022
  • The rotation capacities of the plastic hinges located at beam-ends are significantly reduced in traditional steel framed-tube structures (SFTSs) because of the small span-to-depth ratios of the deep beams, leading to the low ductility and energy dissipation capacities of the SFTSs. High-strength steel framed-tube structures with replaceable shear links (HSSFTS-RSLs) are proposed to address this issue. A replaceable shear link is located at the mid-span of a deep spandrel beam to act as a ductile fuse to dissipate the seismic energy in HSSFTS-RSLs. A 2/3-scaled HSSFTS-RSL specimen with a shear link fabricated of high-strength low-alloy Q355 structural steel was created, and a cyclic loading test was performed to study the hysteresis behaviors of this specimen. The test results were compared to the specimens with soft steel shear links in previous studies to investigate the feasibility of using high-strength low-alloy steel for shear links in HSSFTS-RSLs. The effects of link web stiffener spaces on the cyclic performance of the HSSFTS-RSLs with Q355 steel shear links were investigated based on the nonlinear numerical analysis. The test results indicate that the specimen with a Q355 steel shear link exhibited a reliable and stable seismic performance. If the maximum interstory drift of HSSFTS-RSL is designed lower than 2% under earthquakes, the HSSFTS-RSLs with Q355 steel shear links can have similar seismic performance to the structures with soft steel shear links, even though these shear links have similar shear and flexural strength. For the Q355 steel shear links with web height-to-thickness ratios higher than 30.7 in HSSFTS-RSLs, it is suggested that the maximum intermediate web stiffener space is decreased by 15% from the allowable space for the shear link in AISC341-16 due to the analytical results.

Detecting the HTTP-GET Flood Attacks Based on the Access Behavior of Inline Objects in a Web-page Using NetFlow Data

  • Kang, Koo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.7
    • /
    • pp.1-8
    • /
    • 2016
  • Nowadays, distributed denial of service (DDoS) attacks on web sites reward attackers financially or politically because our daily lifes tightly depends on web services such as on-line banking, e-mail, and e-commerce. One of DDoS attacks to web servers is called HTTP-GET flood attack which is becoming more serious. Most existing techniques are running on the application layer because these attack packets use legitimate network protocols and HTTP payloads; that is, network-level intrusion detection systems cannot distinguish legitimate HTTP-GET requests and malicious requests. In this paper, we propose a practical detection technique against HTTP-GET flood attacks, based on the access behavior of inline objects in a webpage using NetFlow data. In particular, our proposed scheme is working on the network layer without any application-specific deep packet inspections. We implement the proposed detection technique and evaluate the ability of attack detection on a simple test environment using NetBot attacker. Moreover, we also show that our approach must be applicable to real field by showing the test profile captured on a well-known e-commerce site. The results show that our technique can detect the HTTP-GET flood attack effectively.

News Recommendation Exploiting Document Summarization based on Deep Learning (딥러닝 기반의 문서요약기법을 활용한 뉴스 추천)

  • Heu, Jee-Uk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.23-28
    • /
    • 2022
  • Recently smart device(such as smart phone and tablet PC) become a role as an information gateway, using of the web news by multiple users from the web portal has been more important things. However, the quantity of creating web news on the web makes hard to catch the information which the user wants and confuse the users cause of the similar and repeated contents. In this paper, we propose the news recommend system using the document summarization based on KoBART which gives the selected news to users from the candidate news on the news portal. As a result, our proposed system shows higher performance and recommending the news efficiently by pre-training and fine-tuning the KoBART using collected news data.

Influence of Inclined Reinforcement around Openings on the Shear Behavior of Reinforced Concrete Continuous Deep Beams (철근콘크리트 연속 깊은 보의 전단 거동에 대한 개구부 경사 보강근의 영향)

  • Chung, Heon-Soo;Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.171-178
    • /
    • 2007
  • Twelve reinforced concrete continuous deep beams having web openings within interior shear spans were tested to failure. All beams tested had the same geometrical dimensions. The main variables investigated were the opening size and amount of inclined reinforcement around openings. An effective inclined reinforcement factor combining the influence of the opening size and amount of inclined reinforcement on the structural behavior of the beams tested is proposed. It was observed that the load distribution, diagonal crack width, and load capacity of beams tested were greatly dependent on the effective inclined reinforcement factor which ranged from 0 to 0.171 for the test specimens. The higher this factor, the smaller the diagonal crack width and its development rate. A higher load capacity also developed in beams having effective inclined reinforcement factor above 0.077 than in the corresponding solid deep beams. A numerical technique based on the upper bound analysis of the plasticity theory is proposed to evaluate the load capacity of continuous deep beams having openings within interior shear spans. Predictions obtained from the proposed formulas are in good agreement with test results.