• 제목/요약/키워드: Deep space communications

Search Result 17, Processing Time 0.021 seconds

A Turbo-Coded Modulation Scheme for Deep-Space Optical Communications (Deep-Space 광통신을 위한 터보 부호화 변조 기법)

  • Oh, Sang-Mok;Hwang, In-Ho;Lee, Jeong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.139-147
    • /
    • 2010
  • A novel turbo coded modulation scheme, called turbo-APPM, for deep space optical communications is constructed. The constructed turbo-APPM is a serial concatenations of turbo codes, an accumulator and a pulse position modulation (PPM), where turbo codes act as an outer code while the accumulator and the PPM act together as an inner code. The generator polynomial and the puncturing rule for generating turbo codes are chosen to show the low bit error rate. At the receiver, the joint decoding is performed by exchanging soft information iteratively between the inner decoder and the outer decoder. In the outer decoder, a local iterative decoding for turbo codes is conducted before transferring soft information to the inner decoder. Poisson distribution is used to model the deep space optical channel. It is shown by simulations that the constructed turbo-APPM provides coding gains over all previously proposed schemes such as LDPC-APPM, RS-PPM and SCPPM.

Ground Stations of Korean Deep Space Network for Lunar Explorations (달 탐사를 위한 한국형 심우주 지상국)

  • Kim, Sang-Goo;Yoon, Dong-Weon;Hyun, Kwang-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.499-506
    • /
    • 2010
  • Many countries of the world have been launched the competition of space development and Korea also has a plan for the launch of Lunar orbiter in 2020 and Lunar lander in 2025 for Lunar explorations. For the success of the planned Lunar exploration, we need to enhance the required deep space communication technologies. To achieve our goals, we should develop space communications system and Korean DSN (deep space network) based on experiences and technologies through cooperation with the advanced countries in the field of deep space exploration. In this paper, we investigate overseas DSNs and deep space communication systems, and present the link margin and other technical requirements for successful DSN deployment. In addition, we propose a best strategy to secure domestic ground stations for the Korean Lunar exploration missions.

Technology Trends in Space Optical Communications (우주 광통신 기술 동향)

  • C.I. Yeo;Y.S. Heo;S.W. Park;K.S. Kim;H.S. Kang
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.2
    • /
    • pp.85-95
    • /
    • 2023
  • Space optical communication technology capable of large-capacity, high-speed, and low-latency communication can reduce the size, weight, and power consumption of radio frequency communications in existing satellite systems, thereby reducing launch costs, accommodating additional science instruments, and extending lifetime. Despite the high technical difficulty, various projects are being carried out in advanced countries regarding space technology for use in national security and defense, earth observation, and space communications. We review the advantages, key components, and development trends of space optical communication technology, which is attracting attention in applications such as satellite communications, intersatellite linking, and deep space communications.

Design of Deep Space Missions Using a Dedicated Small Launch Vehicle (소형위성 전용 발사체를 이용한 심우주 임무 설계)

  • Choi, Su-Jin;Loucks, Mike;West, Stephen;Seo, Daeban;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.877-888
    • /
    • 2022
  • Recently, as the CAPSTONE, a precursor mission for Lunar Gateway, was launched on a small launch vehicle for the purpose of demonstrating communications and navigation technology in the NRHO, large attention was brought to this event that enabled high-impact deep space mission using dedicated small launch vehicle and small spacecraft. In this study, we introduced the concept of a dual launch operation and examined the capability of the new concept in the exploration of the Moon, Mars and asteroid. It turned out a single launch is sufficient for the lunar low orbit mission up to around 247 kg, and the dual launch option can transport 215 kg and 183 kg to nearby destinations as such as Mars and astroid Apophis respectively.

Simple Signal Detection Algorithm for 4+12+16 APSK in Satellite and Space Communications

  • Lee, Jae-Yoon;Yoon, Dong-Weon;Hyun, Kwang-Min
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.221-230
    • /
    • 2010
  • A 4+12+16 amplitude phase shift keying (APSK) modulation outperforms other 32-APSK modulations in a nonlinear additive white Gaussian noise (AWGN) channel because of its intrinsic robustness against AM/AM and AM/PM distortions caused by the nonlinear characteristics of a high-power amplifier. Thus, this modulation scheme has been adopted in the digital video broadcasting-satellite2 European standard. And it has been considered for high rate transmission of telemetry data on deep space communications in consultative committee for space data systems which provides a forum for discussion of common problems in the development and operation of space data systems. In this paper, we present an improved bits-to-symbol mapping scheme with a better bit error rate for a 4+12+16 APSK signal in a nonlinear AWGN channel and propose a simple signal detection algorithm for the 4+12+16 APSK from the presented bit mapping.

Design and Performance Analysis of DSP Prototype for High Data Rate Transmission of Lunar Orbiter (달 탐사선의 데이터 고속 전송을 위한 DSP 프로토타입 설계 및 성능 분석)

  • Jang, Yeon-Soo;Kim, Sang-Goo;Cho, Kyong-Kuk;Yoon, Dong-Weon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.63-68
    • /
    • 2011
  • Many countries all over the world have been doing lunar exploration projects. Korea has also been doing basic research on lunar exploration. The development of communication systems for lunar exploration projects is one of the most important aspects of performing a successful lunar mission. In this paper, we design a DSP (Digital Signal Processor) prototype based on the requirement analysis of a communication link for lunar exploration and implement its core module considering the international standards for deep space communications to perform a basic research on baseband processor development. It is verified by comparing the bit error rate of the DSP prototype with that of a computer simulation.

Link Scenario Design and Performance Analysis for Korean Lunar Explorations (한국형 달 탐사를 위한 링크 시나리오 설계 및 성능분석)

  • Jeong, Jinwoo;Oh, Janghoon;Yoon, Dongweon;Kim, Sang Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.212-214
    • /
    • 2014
  • In this paper, we present the scenario designs of the possibility of space communications for Korean Lunar Explorer and the analysis of its performance, depending upon the explorer's position within the moon's orbit after being launched from earth. As per each scenario, we would like to propose the analysis of the possible communication times and total transmission throughput data per day in two cases: one for using DSN and another for using only Korean's ground station.

Variable Length Pseudo Noise (PN) Ranging System for Satellite Multiple Missions (위성 다중임무 수행을 위한 가변길이 의사 잡음 레인징 시스템)

  • Jeong, Jinwoo;Kim, Sanggoo;Yoon, Dongweon;Lim, Won-Gyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.14-21
    • /
    • 2013
  • In satellite operations and space exploration missions, a ranging is one of the most essential technologies to get its navigational information of space probes. Recently, the importance of cross-support between space agencies is increasing for more fine performance of space mission. For cross-support, mutually compatible ranging system between space agencies is recommended. For these reasons, the consultative committee for space data systems (CCSDS) recommends pseudo noise (PN) ranging as a digital standard ranging system. The length of PN sequence in CCSDS standard is proper for deep space missions, however, it is too long to use for ranging in near earth missions. In this paper, we propose Variable Length PN sequence schemes suitable for ranging of near earth satellites, such as low-earth orbit (LEO), medium-earth orbit (MEO) and Geostationary orbit (GEO). Therefore we propose variable length PN sequence ranging system including CCSDS standard for multiple missions.

Satellite Anomalies due to Spce Environment Events (우주환경 이벤트에 의한 위성의 이상현상)

  • Park, Jae-Woo;Jeong, Cheol-Oh
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • Space Environment including Solar activities such as Solar explosion, Corona Mass Ejection(CMS) is always not friendly for human. Especially it may be fatal to artificial satellites. The lifetime of geostationary communication satellites are reducing due to plasma such as electrons, protons etc. emitting from Sun. This is because the active components constituting communication satellite are easily affected by plasma. Even though the radiation shielding on the components can be a way to prevent, the cost will be high. So the appropriate shielding is necessary and the study on space environment is also. In this study spacecraft anomalies will be investigated from low earth orbit to deep space spacecraft and the correlation between spacecraft anomalies and space environment events including space explosion, geomagnetic storms etc is analyzed.

Study on Downlink Capacity based on the Visibility Analysis between KPLO and KDSA/DSN (시험용 달 궤도선과 KDSA 및 DSN 간 가시성 분석을 통한 다운링크 용량 연구)

  • Kim, Changkyoon;Jeon, Moon-Jin;Lee, Sang-Rok;Lim, Seong-Bin
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.86-91
    • /
    • 2016
  • KARI(Korea Aerospace Research Institute) has been developing the KPLO(Korea Pathfinder Lunar Orbiter) for Korean first lunar exploration, and analysing various subjects for the mission success. Especially the performance of the communication is one of important factors, because massive scientific and technical data acquired by multiple payloads might be transferred to ground stations on the Earth. In this paper, we explained the study on the 1-day average downlink capacity based on the visibility analysis between ground stations and KPLO, and described its results.