• 제목/요약/키워드: Deep sequencing

검색결과 46건 처리시간 0.023초

The first Korean case with Floating-Harbor syndrome with a novel SRCAP mutation diagnosed by targeted exome sequencing

  • Choi, Eun Mi;Lee, Dong Hyun;Kang, Seok Jin;Shim, Ye Jee;Kim, Heung Sik;Kim, Joon Sik;Jeong, Jong In;Ha, Jung-Sook;Jang, Ja-Hyun
    • Clinical and Experimental Pediatrics
    • /
    • 제61권12호
    • /
    • pp.403-406
    • /
    • 2018
  • Floating-Harbor syndrome is a rare autosomal dominant genetic disorder associated with SRCAP mutation. To date, approximately 50 cases of Floating-Harbor syndrome have been reported, but none have been reported in Korea yet. Floating-Harbor syndrome is characterized by delayed bony maturation, unique facial features, and language impairment. Here, we present a 6-year-old boy with a triangular face, deep-set protruding eyes, low-set ears, wide nose with narrow nasal bridge, short philtrum, long thin lips, clinodactyly, and developmental delay that was transferred to our pediatric clinic for genetic evaluation. He showed progressive delay in the area of language and cognition-adaption as he grew. He had previously undergone chromosomal analysis at another hospital due to his language delay, but his karyotype was normal. We performed targeted exome sequencing, considering several syndromes with similar phenotypes. Library preparation was performed with the TruSight One sequencing panel, which enriches the sample for about 4,800 genes of clinical relevance. Massively parallel sequencing was conducted with NextSeq. An identified variant was confirmed by Sanger sequencing of the patient and his parents. Finally, the patient was confirmed as the first Korean case of Floating-Harbor syndrome with a novel SRCAP (Snf2 related CREBBP activator protein) mutation (c.7732dupT, p.Ser2578Phefs*6), resulting in early termination of the protein; it was not found in either of his healthy parents or a control population. To our knowledge, this is the first study to describe a boy with Floating-Harbor syndrome with a novel SRCAP mutation diagnosed by targeted exome sequencing in Korea.

Production of homozygous klotho knockout porcine embryos cloned from genome-edited porcine fibroblasts

  • Lee, Sanghoon;Jung, Min Hee;Oh, Hyun Ju;Koo, Ok Jae;Park, Se Chang;Lee, Byeong Chun
    • 한국수정란이식학회지
    • /
    • 제31권3호
    • /
    • pp.179-183
    • /
    • 2016
  • Even though klotho deficiency in mice exhibits multiple aging-like phenotypes, studies using large animal models such as pigs, which have many similarities to humans, have been limited due to the absence of cell lines or animal models. The objective of this study was to generate homozygous klotho knockout porcine cell lines and cloned embryos. A CRISPR sgRNA specific for the klotho gene was designed and sgRNA (targeting exon 3 of klotho) and Cas9 RNPs were transfected into porcine fibroblasts. The transfected fibroblasts were then used for single cell colony formation and 9 single cell-derived colonies were established. In a T7 endonuclease I mutation assay, 5 colonies (#3, #4, #5, #7 and #9) were confirmed as mutated. These 5 colonies were subsequently analyzed by deep sequencing for determination of homozygous mutated colonies and 4 (#3, #4, #5 and #9) from 5 colonies contained homozygous modifications. Somatic cell nuclear transfer was performed to generate homozygous klotho knockout cloned embryos by using one homozygous mutation colony (#9); the cleavage and blastocyst formation rates were 72.0% and 8.3%, respectively. Two cloned embryos derived from a homozygous klotho knockout cell line (#9) were subjected to deep sequencing and they showed the same mutation pattern as the donor cell line. In conclusion, we produced homozygous klotho knockout porcine embryos cloned from genome-edited porcine fibroblasts.

Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

  • Mathiyalagan, Ramya;Subramaniyam, Sathiyamoorthy;Natarajan, Sathishkumar;Kim, Yeon Ju;Sun, Myung Suk;Kim, Se Young;Kim, Yu-Jin;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • 제37권2호
    • /
    • pp.227-247
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.

Diversity of Deep-sea Piezophiles and Their Molecular Adaptations to High-pressure Environment

  • Kato, Chiaki;Sato, Takako;Tamegai, Hideyuki;Nakasone, Kaoru
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2007년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.80-82
    • /
    • 2007
  • We have isolated numerous cold deep-sea adapted microorganisms (piezophilic, formerly referred to as "barophilic" bacteria) using deep-sea research submersibles. Many of the isolates are novel psychrophilic bacteria, and we have identified several new piezophilic species, i.e., Photobacterium profundum, Shewanella violacea, Moritella japonica, Moritella yayanosii, Psychromonas kaikoi, and Colwellia piezophila. These piezophiles are involving to five genera in gamma-Proteobacteria subgroup and produce significant amounts of unsaturated fatty acids in their cell membrane fractions to maintain the membrane fluidity in cold and high-pressure environments. Piezophilic microorganisms have been identified in many deep-sea bottoms of many of the world oceans. Therefore, these microbes are well distributed on our planet. One of the isolated deep-sea piezophiles, Shewanella violacea strain DSS12 is a psychrophilic, moderately piezophilic bacterium from a sediment sample collected at the Ryukyu Trench (depth: 5,110 m), which grows optimally at 30 MPa and $8^{\circ}C$ but also grows at atmospheric pressure (0.1 MPa) and $8^{\circ}C$. We have examined this strain to elucidate the molecular basis for gene regulation at different pressure conditions because this strain is useful as a model bacterium for comparing the various features of bacterial physiology under pressure conditions. In addition, we completed the sequencing of the entire genome of this piezophilic bacterium and we expect that many biotechnologically useful genes will be identified from the genome information.

  • PDF

RNA-Seq explores the functional role of the fibroblast growth factor 10 gene in bovine adipocytes differentiation

  • Nurgulsim Kaster;Rajwali Khan;Ijaz Ahmad;Kazhgaliyev Nurlybay Zhigerbayevich;Imbay Seisembay;Akhmetbekov Nurbolat;Shaikenova Kymbat Hamitovna;Omarova Karlygash Mirambekovna;Makhanbetova Aizhan Bekbolatovna;Tlegen Garipovich Amangaliyev;Ateikhan Bolatbek;Titanov Zhanat Yeginbaevich;Shakoor Ahmad;Zan Linsen;Begenova Ainagul Baibolsynovna
    • Animal Bioscience
    • /
    • 제37권5호
    • /
    • pp.929-943
    • /
    • 2024
  • Objective: The present study was executed to explore the molecular mechanism of fibroblast growth factor 10 (FGF10) gene in bovine adipogenesis. Methods: The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity of infection, transfection efficiency, interference efficiency were evaluated through quantitative real-time polymerase chain reaction, western blotting and fluorescence microscopy. The lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker genes were measured during preadipocytes differentiation. The differentially expressed genes were explored through deep RNA sequencing. Results: The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 gene significantly (p<0.05) reduced the lipid droplets and TG content, and their down-regulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) including 157 up regulated and 1,617 down regulated genes were explored in adipocytes infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation of lipolysis in adipocytes. Conclusion: Therefore, we can conclude that the FGF10 gene is a negative regulator of bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.

A DQN-based Two-Stage Scheduling Method for Real-Time Large-Scale EVs Charging Service

  • Tianyang Li;Yingnan Han;Xiaolong Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.551-569
    • /
    • 2024
  • With the rapid development of electric vehicles (EVs) industry, EV charging service becomes more and more important. Especially, in the case of suddenly drop of air temperature or open holidays that large-scale EVs seeking for charging devices (CDs) in a short time. In such scenario, inefficient EV charging scheduling algorithm might lead to a bad service quality, for example, long queueing times for EVs and unreasonable idling time for charging devices. To deal with this issue, this paper propose a Deep-Q-Network (DQN) based two-stage scheduling method for the large-scale EVs charging service. Fine-grained states with two delicate neural networks are proposed to optimize the sequencing of EVs and charging station (CS) arrangement. Two efficient algorithms are presented to obtain the optimal EVs charging scheduling scheme for large-scale EVs charging demand. Three case studies show the superiority of our proposal, in terms of a high service quality (minimized average queuing time of EVs and maximized charging performance at both EV and CS sides) and achieve greater scheduling efficiency. The code and data are available at THE CODE AND DATA.

Brain somatic mutations in MTOR leading to focal cortical dysplasia

  • Lim, Jae Seok;Lee, Jeong Ho
    • BMB Reports
    • /
    • 제49권2호
    • /
    • pp.71-72
    • /
    • 2016
  • Focal cortical dysplasia type II (FCDII) is a focal malformation of the developing cerebral cortex and the major cause of intractable epilepsy. However, since the molecular genetic etiology of FCD has remained enigmatic, the effective therapeutic target for this condition has remained poorly understood. Our recent study on FCD utilizing various deep sequencing platforms identified somatic mutations in MTOR (existing as low as 1% allelic frequency) only in the affected brain tissues. We observed that these mutations induced hyperactivation of the mTOR kinase. In addition, focal cortical expression of mutant MTOR using in utero electroporation in mice, recapitulated the neuropathological features of FCDII, such as migration defect, cytomegalic neuron and spontaneous seizures. Furthermore, seizures and dysmorphic neurons were rescued by the administration of mTOR inhibitor, rapamycin. This study provides the first evidence that brain somatic activating mutations in MTOR cause FCD, and suggests the potential drug target for intractable epilepsy in FCD patients.

신경망 분산 학습을 위한 일반 납기를 갖는 시퀀싱 문제 (A Sequencing Problem with Generalized Due Dates for Distributed Training of Neural Networks)

  • 최병천;민윤홍
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.189-195
    • /
    • 2020
  • 본 논문은 딥러닝을 위한분산학습에서학습속도를 저하시키는 stale 문제를 최소화하기 위한 방법으로 데이터 시퀀싱을 제안하였다. 이데이터 시퀀싱 문제는일반 납기를 갖는 단일 공정 하에서 일찍 혹은 늦음 정도의 총합을 최소화 하는 스케줄링 문제로 모델링할 수 있다. 만약 최적해에서 크기가 작은 작업과 큰 작업의 순서가 미리 알려져 있다면, 이 스케줄링 문제가 효율적으로 풀린다는 것을 보였다.

miRNA Pattern Discovery from Sequence Alignment

  • Sun, Xiaohan;Zhang, Junying
    • Journal of Information Processing Systems
    • /
    • 제13권6호
    • /
    • pp.1527-1543
    • /
    • 2017
  • MiRNA is a biological short sequence, which plays a crucial role in almost all important biological process. MiRNA patterns are common sequence segments of multiple mature miRNA sequences, and they are of significance in identifying miRNAs due to the functional implication in miRNA patterns. In the proposed approach, the primary miRNA patterns are produced from sequence alignment, and they are then cut into short segment miRNA patterns. From the segment miRNA patterns, the candidate miRNA patterns are selected based on estimated probability, and from which, the potential miRNA patterns are further selected according to the classification performance between authentic and artificial miRNA sequences. Three parameters are suggested that bi-nucleotides are employed to compute the estimated probability of segment miRNA patterns, and top 1% segment miRNA patterns of length four in the order of estimated probabilities are selected as potential miRNA patterns.

A newborn girl with harlequin ichthyosis genetically confirmed by ABCA12 analysis

  • Kim, Jihye;Ko, Jung Min;Shin, Seung Han;Kim, Ee-Kyung;Kim, Han-Suk
    • Journal of Genetic Medicine
    • /
    • 제16권2호
    • /
    • pp.62-66
    • /
    • 2019
  • Harlequin ichthyosis (HI, OMIM #242500) is one of the most severe skin diseases among the autosomal recessive congenital ichthyoses, with high morbidity and mortality, particularly in newborns. Clinically, it is characterized by a typical appearance of generalized, thick, yellowish, hyperkeratotic plates with deep erythematous fissures on the skin. Herein, we present the case of a newborn girl with HI that was genetically confirmed by targeted gene panel analysis. The premature baby was encased in an opaque white membrane with erosion covering the skin of the entire body except the lips, with her hands and feet restricted by the membrane. Humidification, emollient, and retinoic acid treatment were started; the thick ichthyosis gradually peeled off and the underlying skin was only covered with thin scales. Targeted gene panel analysis using next-generation sequencing and validation with Sanger sequencing and quantitative polymerase chain reaction analyses confirmed compound heterozygous mutations of the ABCA12 gene (p.N1380S and a partial gene deletion encompassing exon 9). The parents were carriers for each of the identified mutations. Early recognition of the genetic etiology of congenital ichthyosis can, thus, facilitate genetic counseling for patients and their families.