• 제목/요약/키워드: Deep learning reconstruction

검색결과 108건 처리시간 0.026초

크론병에서 자기공명영상 장운동기록의 단일호흡 단발 고속 스핀 에코기법: 딥러닝 기반 재구성의 영향 (Impact of Deep-Learning Based Reconstruction on Single-Breath-Hold, Single-Shot Fast Spin-Echo in MR Enterography for Crohn's Disease)

  • 박언주;이예다운;이준성
    • 대한영상의학회지
    • /
    • 제84권6호
    • /
    • pp.1309-1323
    • /
    • 2023
  • 목적 크론병 환자의 자기공명영상 장운동기록(MR enterography; 이하 MRE)에서 단발 고속 스핀 에코기법(single-shot fast spin-echo; 이하 SSFSE)을 이용한 단일호흡영상(singlebreath-hold; 이하 SBH)과 다호흡영상(multiple-breath-hold; 이하 MBH)을 딥러닝 기반 재구성(deep-learning based reconstruction; 이하 DLR)의 유무에 따라 네 개의 영상에서 품질을 비교했다. 대상과 방법 이 연구는 후향적 연구로서, 크론병으로 MRE를 시행한 61명의 환자가 포함되었다. SBH와 MBH SSFSE 영상에서 각각 DLR과 고식적 재구성(conventional reconstruction; 이하 CR)을 시행한 영상을 획득했다. 두 명의 영상의학과 전문의가 네 가지 영상을 분석하여 전반적인 영상의 품질, 인공물, 선명도와 움직임 관련 신호 손실에 대하여 각각 5점 척도를 이용해 점수를 부여했다. 회장과 말단 회장, 결장에서 염증을 시사하는 세 가지 소견을 평가했다. 각 영상에 대해서 공간적 불일치 여부를 확인했고, 네 가지 영상에서 각각 다른 두 위치에서 신호 대 잡음비(signal-to-noise ratio; 이하 SNR)를 계산했다. 결과 SBH SSFSE 영상에서 DLR을 적용한 경우 CR보다 영상의 품질, 인공물, 선명도가 통계학적으로 유의하게 개선되었다. 네 가지 영상 중 SBH-DLR 영상에서 SNR이 가장 높게 나타났다(p < 0.001). 염증 소견에 대한 판독자 간 일치율은 좋음에서 매우 좋음으로 나타났고(κ = 0.76-0.95) 시퀀스 간 일치율은 매우 좋음으로 측정되었다(κ = 0.92-0.94). 공간적 불일치는 SBH 영상보다 MBH 영상에서 통계학적으로 유의하게 빈도가 높았다(p < 0.001). 결론 SBH-DLR 영상은 MBH-CR 영상과 비교했을 때 동등한 영상 품질과 성능을 보여주었다. 또한, MBH 영상에 비해 절반 이하의 시간과 단일 호흡만으로 영상을 획득할 수 있으며 공간 불일치를 줄일 수 있는 대체제로 사용할 수 있다.

Evaluation of deep learning and convolutional neural network algorithms for mandibular fracture detection using radiographic images: A systematic review and meta-analysis

  • Mahmood Dashti;Sahar Ghaedsharaf;Shohreh Ghasemi;Niusha Zare;Elena-Florentina Constantin;Amir Fahimipour;Neda Tajbakhsh;Niloofar Ghadimi
    • Imaging Science in Dentistry
    • /
    • 제54권3호
    • /
    • pp.232-239
    • /
    • 2024
  • Purpose: The use of artificial intelligence (AI) and deep learning algorithms in dentistry, especially for processing radiographic images, has markedly increased. However, detailed information remains limited regarding the accuracy of these algorithms in detecting mandibular fractures. Materials and Methods: This meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Specific keywords were generated regarding the accuracy of AI algorithms in detecting mandibular fractures on radiographic images. Then, the PubMed/Medline, Scopus, Embase, and Web of Science databases were searched. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was employed to evaluate potential bias in the selected studies. A pooled analysis of the relevant parameters was conducted using STATA version 17 (StataCorp, College Station, TX, USA), utilizing the metandi command. Results: Of the 49 studies reviewed, 5 met the inclusion criteria. All of the selected studies utilized convolutional neural network algorithms, albeit with varying backbone structures, and all evaluated panoramic radiography images. The pooled analysis yielded a sensitivity of 0.971 (95% confidence interval [CI]: 0.881-0.949), a specificity of 0.813 (95% CI: 0.797-0.824), and a diagnostic odds ratio of 7.109 (95% CI: 5.27-8.913). Conclusion: This review suggests that deep learning algorithms show potential for detecting mandibular fractures on panoramic radiography images. However, their effectiveness is currently limited by the small size and narrow scope of available datasets. Further research with larger and more diverse datasets is crucial to verify the accuracy of these tools in in practical dental settings.

계층 간 특징 복원-예측 네트워크를 통한 피라미드 특징 압축 (Pyramid Feature Compression with Inter-Level Feature Restoration-Prediction Network)

  • 김민섭;심동규
    • 방송공학회논문지
    • /
    • 제27권3호
    • /
    • pp.283-294
    • /
    • 2022
  • 딥 러닝 네트워크에서 사용되는 특징 맵은 일반적으로 영상보다 데이터가 크며 특징 맵을 전송하기 위해서는 영상의 압축률보다 더 높은 압축률이 요구된다. 본 논문은 딥러닝 기반의 영상처리에서 객체의 크기에 대한 강인성을 가지는 FPN 구조의 네트워크에서 사용되는 피라미드 특징 맵을 높은 압축률로 전송하기 위해 제안한 복원-예측 네트워크를 통해 전송된 일부 계층의 피라미드 특징 맵으로 전송하지 않은 계층의 피라미드 특징 맵을 예측하며, 압축으로 인한 손상을 복원하는 구조를 제안한다. 제안한 방법의 COCO 데이터셋 2017 Train images에 대한 객체 탐지의 성능은 rate-precision 그래프에서 VTM12.0을 통해 특징 맵을 압축한 결과 대비 BD-rate 31.25%의 성능향상을 보였고, PCA와 DeepCABAC을 통한 압축을 수행한 방법 대비 BD-rate 57.79%의 성능향상을 보였다.

Multi-Description Image Compression Coding Algorithm Based on Depth Learning

  • Yong Zhang;Guoteng Hui;Lei Zhang
    • Journal of Information Processing Systems
    • /
    • 제19권2호
    • /
    • pp.232-239
    • /
    • 2023
  • Aiming at the poor compression quality of traditional image compression coding (ICC) algorithm, a multi-description ICC algorithm based on depth learning is put forward in this study. In this study, first an image compression algorithm was designed based on multi-description coding theory. Image compression samples were collected, and the measurement matrix was calculated. Then, it processed the multi-description ICC sample set by using the convolutional self-coding neural system in depth learning. Compressing the wavelet coefficients after coding and synthesizing the multi-description image band sparse matrix obtained the multi-description ICC sequence. Averaging the multi-description image coding data in accordance with the effective single point's position could finally realize the compression coding of multi-description images. According to experimental results, the designed algorithm consumes less time for image compression, and exhibits better image compression quality and better image reconstruction effect.

Super-resolution of compressed image by deep residual network

  • Jin, Yan;Park, Bumjun;Jeong, Jechang
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.59-61
    • /
    • 2018
  • Highly compressed images typically not only have low resolution, but are also affected by compression artifacts. Performing image super-resolution (SR) directly on highly compressed image would simultaneously magnify the blocking artifacts. In this paper, a SR method based on deep learning is proposed. The method is an end-to-end trainable deep convolutional neural network which performs SR on compressed images so as to reduce compression artifacts and improve image resolution. The proposed network is divided into compression artifacts removal (CAR) part and SR reconstruction part, and the network is trained by three-step training method to optimize training procedure. Experiments on JPEG compressed images with quality factors of 10, 20, and 30 demonstrate the effectiveness of the proposed method on commonly used test images and image sets.

  • PDF

다 시점 영상 콘텐츠 특성에 따른 딥러닝 기반 깊이 추정 방법론 (Deep learning-based Multi-view Depth Estimation Methodology of Contents' Characteristics)

  • 손호성;신민정;김준수;윤국진;정원식;이현우;강석주
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.4-7
    • /
    • 2022
  • 최근 다 시점 영상 콘텐츠 기반 3차원 공간(장면) 복원을 위한 다 시점 깊이 추정 딥러닝 네트워크 방법론이 널리 연구되고 있다. 다 시점 영상 콘텐츠는 촬영 구도, 촬영 환경 및 세팅에 따라 다양한 특성을 가지며, 고품질의 3차원 복원을 위해서는 이러한 특성을 이해하고, 적절한 깊이 추정 네트워크 기법들을 적용하는 것이 중요하다. 다 시점 영상 촬영 구도로는 수렴형, 발산형이 존재하며, 촬영 세팅에는 카메라 시점 간 물리적 거리인 baseline이 있다. 본 연구는 이와 같은 다 시점 영상 콘텐츠의 종류와 각 특징에 기반하여 콘텐츠(데이터 셋)의 특성에 따른 적절한 깊이 추정 네트워크 방법론을 다룬다. 실험 결과로부터, 기존의 다 시점 깊이 추정 네트워크를 발산형 또는 large baseline 특성을 가지는 데이터 셋에 곧바로 적용하는데 한계점이 존재함을 확인하였다. 따라서, 각 영상 환경에 적합한 '참조 시점 개수' 및 적절한 '참조 시점 선택 알고리즘'의 필요성을 검증하였다. 결론적으로, 3차원 공간(장면) 복원을 위한 딥러닝 기반 깊이 추정 네트워크 구현 시, 본 연구 결과가 다 시점 영상 콘텐츠 기반 깊이 추정 기법 선택에 있어 가이드라인으로 활용될 수 있음을 확인하였다.

  • PDF

Dark-Blood Computed Tomography Angiography Combined With Deep Learning Reconstruction for Cervical Artery Wall Imaging in Takayasu Arteritis

  • Tong Su;Zhe Zhang;Yu Chen;Yun Wang;Yumei Li;Min Xu;Jian Wang;Jing Li;Xinping Tian;Zhengyu Jin
    • Korean Journal of Radiology
    • /
    • 제25권4호
    • /
    • pp.384-394
    • /
    • 2024
  • Objective: To evaluate the image quality of novel dark-blood computed tomography angiography (CTA) imaging combined with deep learning reconstruction (DLR) compared to delayed-phase CTA images with hybrid iterative reconstruction (HIR), to visualize the cervical artery wall in patients with Takayasu arteritis (TAK). Materials and Methods: This prospective study continuously recruited 53 patients with TAK (mean age: 33.8 ± 10.2 years; 49 females) between January and July 2022 who underwent head-neck CTA scans. The arterial- and delayed-phase images were reconstructed using HIR and DLR. Subtracted images of the arterial-phase from the delayed-phase were then added to the original delayed-phase using a denoising filter to generate the final-dark-blood images. Qualitative image quality scores and quantitative parameters were obtained and compared among the three groups of images: Delayed-HIR, Dark-blood-HIR, and Dark-blood-DLR. Results: Compared to Delayed-HIR, Dark-blood-HIR images demonstrated higher qualitative scores in terms of vascular wall visualization and diagnostic confidence index (all P < 0.001). These qualitative scores further improved after applying DLR (Dark-blood-DLR compared to Dark-blood-HIR, all P < 0.001). Dark-blood DLR also showed higher scores for overall image noise than Dark-blood-HIR (P < 0.001). In the quantitative analysis, the contrast-to-noise ratio (CNR) values between the vessel wall and lumen for the bilateral common carotid arteries and brachiocephalic trunk were significantly higher on Dark-blood-HIR images than on Delayed-HIR images (all P < 0.05). The CNR values were significantly higher for Dark-blood-DLR than for Dark-blood-HIR in all cervical arteries (all P < 0.001). Conclusion: Compared with Delayed-HIR CTA, the dark-blood method combined with DLR improved CTA image quality and enhanced visualization of the cervical artery wall in patients with TAK.

홀로그램 복원을 학습하는 딥러닝을 이용한 홀로그램 코덱 (Hologram Codec using Deep Learning training Reconstruction)

  • 김우석;오관정;서영호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.82-83
    • /
    • 2021
  • 홀로그램 비디오는 획득 방식에 따라서 다양한 종류의 홀로그램이 존재한다. 이들은 서로 다른 특성을 가지고 있기 때문에, 홀로그램 비디오를 압축하기 위한 방법도 매우 다양하다. 다양한 홀로그램 중에서, 우리는 상용 phase-only-typed SLM에 바로 디스플레이 할 수 있는 phase-only 홀로그램 비디오를 압축하기 위한 코덱을 제안한다. 이때 스케일링 기법을 이용하고, 스케일링 다운과 업으로 인한 화질의 손실을 복원하기 위해 딥러닝 모델을 사용하는 방법을 제안한다.

  • PDF

Fast Real-Time Cardiac MRI: a Review of Current Techniques and Future Directions

  • Wang, Xiaoqing;Uecker, Martin;Feng, Li
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.252-265
    • /
    • 2021
  • Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-invasive imaging technique for the assessment of global and regional cardiac function. Conventional cardiac MRI is limited by the long acquisition time, the need for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data acquired continuously without synchronization or binning, and therefore of potential interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition and reconstruction techniques must be employed to facilitate real-time cardiac MRI. The goal of this study is to discuss methods that have been developed for real-time cardiac MRI. In particular, we classified existing techniques into two categories based on the use of non-iterative and iterative reconstruction. In addition, we present several research trends in this direction, including deep learning-based image reconstruction and other advanced real-time cardiac MRI strategies that reconstruct images acquired from real-time free-breathing techniques.

SRCNN과 VDSR의 구조와 방법 및 개선된 성능평가 함수 (Structure, Method, and Improved Performance Evaluation Function of SRCNN and VDSR)

  • 이광찬;왕광싱;신성윤
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.543-548
    • /
    • 2021
  • 이미지는 해상도가 높을수록 이미지를 시청하는 사람들의 만족도가 높아지며 초고해상도 이미지화는 컴퓨터 비전이나 영상처리 분야 중에서도 연구 가치가 꽤 높아지고 있다. 본 연구에서는 주로 딥 러닝 초 해상도 모델을 사용하여 저해상도 이미지 LR의 주요 특징을 추출한다. 추출된 특징을 학습 및 재구성하고, 고해상도 이미지 HR을 생성하는 재구성 기반 알고리즘에 중점을 둔다. 본 논문에서는 재구성에 기반을 둔 초 해상도 알고리즘 모델에서 SRCNN과 VDSR에 대하여 알아보도록 한다. SRCNN과 VDSR모델의 구조 및 알고리즘 프로세스를 간략하게 소개하고 개선된 성능평가 함수에서도 다중 채널과 특수한 형태에 대하여 알아보도록 하며, 실험을 통하여 각 알고리즘의 성능을 이해하도록 한다. 실험에서는 SRCNN 및 VDSR 모델의 결과와 피크 신호 대 잡음 비 및 이미지 구조 유사도를 비교하는 실험을 수행하여 결과를 한눈에 볼 수 있도록 하였다.