• 제목/요약/키워드: Deep learning model

검색결과 2,840건 처리시간 0.032초

딥러닝 기법을 사용하는 소프트웨어 결함 예측 모델 (Prediction Model of Software Fault using Deep Learning Methods)

  • 홍의석
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.111-117
    • /
    • 2022
  • 수십년간 매우 많은 소프트웨어 결함 예측 모델에 관한 연구들이 수행되었으며, 그들 중 기계학습 기법을 사용한 모델들이 가장 좋은 성능을 보였다. 딥러닝 기법은 기계학습 분야에서 가장 각광받는 기술이 되었지만 결함 예측 모델의 분류기로 사용된 연구는 거의 없었다. 몇몇 연구들은 모델의 입력 소스나 구문 데이터로부터 시맨틱 정보를 얻어내는데 딥러닝을 사용하였다. 본 논문은 3개 이상의 은닉층을 갖는 MLP를 이용하여 모델 구조와 하이퍼 파라미터를 변경하여 여러 모델들을 제작하였다. 모델 평가 실험 결과 MLP 기반 딥러닝 모델들은 기존 결함 예측 모델들과 Accuracy는 비슷한 성능을 보였으나 AUC는 유의미하게 더 우수한 성능을 보였다. 또한 또다른 딥러닝 모델인 CNN 모델보다도 더 나은 성능을 보였다.

딥러닝 모델 병렬 처리 (Deep Learning Model Parallelism)

  • 박유미;안신영;임은지;최용석;우영춘;최완
    • 전자통신동향분석
    • /
    • 제33권4호
    • /
    • pp.1-13
    • /
    • 2018
  • Deep learning (DL) models have been widely applied to AI applications such image recognition and language translation with big data. Recently, DL models have becomes larger and more complicated, and have merged together. For the accelerated training of a large-scale deep learning model, model parallelism that partitions the model parameters for non-shared parallel access and updates across multiple machines was provided by a few distributed deep learning frameworks. Model parallelism as a training acceleration method, however, is not as commonly used as data parallelism owing to the difficulty of efficient model parallelism. This paper provides a comprehensive survey of the state of the art in model parallelism by comparing the implementation technologies in several deep learning frameworks that support model parallelism, and suggests a future research directions for improving model parallelism technology.

갯벌 생태계 모니터링을 위한 딥러닝 기반의 영상 분석 기술 연구 - 신두리 갯벌 달랑게 모니터링을 중심으로 - (Image analysis technology with deep learning for monitoring the tidal flat ecosystem -Focused on monitoring the Ocypode stimpsoni Ortmann, 1897 in the Sindu-ri tidal flat -)

  • 김동우;이상혁;유재진;손승우
    • 한국환경복원기술학회지
    • /
    • 제24권6호
    • /
    • pp.89-96
    • /
    • 2021
  • In this study, a deep-learning image analysis model was established and validated for AI-based monitoring of the tidal flat ecosystem for marine protected creatures Ocypode stimpsoni and their habitat. The data in the study was constructed using an unmanned aerial vehicle, and the U-net model was applied for the deep learning model. The accuracy of deep learning model learning results was about 0.76 and about 0.8 each for the Ocypode stimpsoni and their burrow whose accuracy was higher. Analyzing the distribution of crabs and burrows by putting orthomosaic images of the entire study area to the learned deep learning model, it was confirmed that 1,943 Ocypode stimpsoni and 2,807 burrow were distributed in the study area. Through this study, the possibility of using the deep learning image analysis technology for monitoring the tidal ecosystem was confirmed. And it is expected that it can be used in the tidal ecosystem monitoring field by expanding the monitoring sites and target species in the future.

의료 영상에 최적화된 딥러닝 모델의 개발 (Development of an Optimized Deep Learning Model for Medical Imaging)

  • 김영재;김광기
    • 대한영상의학회지
    • /
    • 제81권6호
    • /
    • pp.1274-1289
    • /
    • 2020
  • 최근, 의료 영상 분야에서 딥러닝은 가장 활발하게 연구되고 있는 기술 중 하나이다. 충분한 데이터와 최신의 딥러닝 알고리즘은 딥러닝 모델의 개발에 중요한 요소이다. 하지만 일반화된 최적의 딥러닝 모델을 개발하기 위해서는 데이터의 양과 최신의 딥러닝 알고리즘 외에도 많은 것을 고려해야 한다. 데이터 수집부터 가공, 전처리, 모델의 학습 및 검증, 경량화까지 모든 과정이 딥러닝 모델의 성능에 영향을 미칠 수 있기 때문이다. 본 종설에서는 의료 영상에 최적화된 딥러닝 모델을 위해 개발 과정 각각에서 고려해야 할 중요한 요소들을 살펴보고자 한다.

Design and Verification of Spacecraft Pose Estimation Algorithm using Deep Learning

  • Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
    • Journal of Astronomy and Space Sciences
    • /
    • 제41권2호
    • /
    • pp.61-78
    • /
    • 2024
  • This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.

인플루언서를 위한 딥러닝 기반의 제품 추천모델 개발 (Deep Learning-based Product Recommendation Model for Influencer Marketing)

  • 송희석;김재경
    • Journal of Information Technology Applications and Management
    • /
    • 제29권3호
    • /
    • pp.43-55
    • /
    • 2022
  • In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition(GMF), a collaborative filtering model based on multi-layer perceptron (MLP), and neural collaborative filtering and generalized matrix Factorization (NeuMF), a hybrid model combining GMP and MLP was developed and tested. In particular, we utilize one-class problem free boosting (OCF-B) method to solve the one-class problem that occurs when training is performed only on positive cases using implicit feedback in the deep learning-based collaborative filtering recommendation model. In relation to model selection based on overall experimental results, the MLP model showed highest performance with weighted average precision, weighted average recall, and f1 score were 0.85 in the model (n=3,000, term=15). This study is meaningful in practice as it attempted to commercialize a deep learning-based recommendation system where influencer's promotion data is being accumulated, pactical personalized recommendation service is not yet commercially applied yet.

mmWave 레이더 기반 사람 행동 인식 딥러닝 모델의 경량화와 자원 효율성을 위한 하이퍼파라미터 최적화 기법 (Hyperparameter optimization for Lightweight and Resource-Efficient Deep Learning Model in Human Activity Recognition using Short-range mmWave Radar)

  • 강지헌
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.319-325
    • /
    • 2023
  • In this study, we proposed a method for hyperparameter optimization in the building and training of a deep learning model designed to process point cloud data collected by a millimeter-wave radar system. The primary aim of this study is to facilitate the deployment of a baseline model in resource-constrained IoT devices. We evaluated a RadHAR baseline deep learning model trained on a public dataset composed of point clouds representing five distinct human activities. Additionally, we introduced a coarse-to-fine hyperparameter optimization procedure, showing substantial potential to enhance model efficiency without compromising predictive performance. Experimental results show the feasibility of significantly reducing model size without adversely impacting performance. Specifically, the optimized model demonstrated a 3.3% improvement in classification accuracy despite a 16.8% reduction in number of parameters compared th the baseline model. In conclusion, this research offers valuable insights for the development of deep learning models for resource-constrained IoT devices, underscoring the potential of hyperparameter optimization and model size reduction strategies. This work contributes to enhancing the practicality and usability of deep learning models in real-world environments, where high levels of accuracy and efficiency in data processing and classification tasks are required.

기상 데이터와 기상 위성 영상을 이용한 다중 딥러닝 모델 기반 일사량 예측 (Radiation Prediction Based on Multi Deep Learning Model Using Weather Data and Weather Satellites Image)

  • 김재정;유용훈;김창복
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.569-575
    • /
    • 2021
  • 딥러닝은 데이터의 품질과 모델에 따라 예측 성능에 차이를 보인다. 본 연구는 발전량 예측에 가장 영향을 주는 일사량 예측을 위한 최적의 딥러닝 모델을 구축하기 위해 다양한 입력 데이터와 다중 딥러닝 모델을 사용하였다. 입력 데이터는 기상청의 기상 데이터와 천리안 기상영상을 기상청 지역의 영상을 분할하여 사용하였다, 본 연구는 기본적인 딥러닝 모델인 DNN, LSTM, CNN 모델에 대해 중간층의 깊이와 노드를 변경하여 일사량을 예측하여, 비교 평가하였다, 또한, 각 모델에서 가장 좋은 오차율을 가진 모델을 연결한 다증 딥러닝 모델을 구축하여 일사량을 예측하였다. 실험 결과로서 다중 딥러닝 모델인 모델 A의 RMSE는 0.0637이며, 모델 B의 RMSE는 0.07062이며, 모델 C의 RMSE는 0.06052로서 단일 모델보다 모델 A 그리고 모델 C의 오차율이 좋았다. 본 연구는 실험을 통해 두 개 이상의 모델을 연결한 모델이 향상된 예측률과 안정된 학습 결과를 보였다.

Developing and Evaluating Deep Learning Algorithms for Object Detection: Key Points for Achieving Superior Model Performance

  • Jang-Hoon Oh;Hyug-Gi Kim;Kyung Mi Lee
    • Korean Journal of Radiology
    • /
    • 제24권7호
    • /
    • pp.698-714
    • /
    • 2023
  • In recent years, artificial intelligence, especially object detection-based deep learning in computer vision, has made significant advancements, driven by the development of computing power and the widespread use of graphic processor units. Object detection-based deep learning techniques have been applied in various fields, including the medical imaging domain, where remarkable achievements have been reported in disease detection. However, the application of deep learning does not always guarantee satisfactory performance, and researchers have been employing trial-and-error to identify the factors contributing to performance degradation and enhance their models. Moreover, due to the black-box problem, the intermediate processes of a deep learning network cannot be comprehended by humans; as a result, identifying problems in a deep learning model that exhibits poor performance can be challenging. This article highlights potential issues that may cause performance degradation at each deep learning step in the medical imaging domain and discusses factors that must be considered to improve the performance of deep learning models. Researchers who wish to begin deep learning research can reduce the required amount of trial-and-error by understanding the issues discussed in this study.

RapidEye 위성영상과 Semantic Segmentation 기반 딥러닝 모델을 이용한 토지피복분류의 정확도 평가 (Accuracy Assessment of Land-Use Land-Cover Classification Using Semantic Segmentation-Based Deep Learning Model and RapidEye Imagery)

  • 심우담;임종수;이정수
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.269-282
    • /
    • 2023
  • 본 연구는 딥러닝 모델(deep learning model)을 활용하여 토지피복분류를 수행하였으며 입력 이미지의 크기, Stride 적용 등 데이터세트(dataset)의 조절을 통해 토지피복분류를 위한 최적의 딥러닝 모델 선정을 목적으로 하였다. 적용한 딥러닝 모델은 3종류로 Encoder-Decoder 구조를 가진 U-net과 DeeplabV3+, 두 가지 모델을 결합한 앙상블(Ensemble) 모델을 활용하였다. 데이터세트는 RapidEye 위성영상을 입력영상으로, 라벨(label) 이미지는 Intergovernmental Panel on Climate Change 토지이용의 6가지 범주에 따라 구축한 Raster 이미지를 참값으로 활용하였다. 딥러닝 모델의 정확도 향상을 위해 데이터세트의 질적 향상 문제에 대해 주목하였으며 딥러닝 모델(U-net, DeeplabV3+, Ensemble), 입력 이미지 크기(64 × 64 pixel, 256 × 256 pixel), Stride 적용(50%, 100%) 조합을 통해 12가지 토지피복도를 구축하였다. 라벨 이미지와 딥러닝 모델 기반의 토지피복도의 정합성 평가결과, U-net과 DeeplabV3+ 모델의 전체 정확도는 각각 최대 약 87.9%와 89.8%, kappa 계수는 모두 약 72% 이상으로 높은 정확도를 보였으며, 64 × 64 pixel 크기의 데이터세트를 활용한 U-net 모델의 정확도가 가장 높았다. 또한 딥러닝 모델에 앙상블 및 Stride를 적용한 결과, 최대 약 3% 정확도가 상승하였으며 Semantic Segmentation 기반 딥러닝 모델의 단점인 경계간의 불일치가 개선됨을 확인하였다.